Как подключить
Подключение инфракрасного светодиода ничем не отличается от подключения обычного светоизлучающего. И тот, и другой включаются в цепь постоянного тока через ограничивающий резистор, обеспечивающий номинальный рабочий ток прибора. Ну и не стоит забывать, что инфракрасный светодиод – прибор полярный, поэтому на его анод нужно обязательно подавать «плюс», а на катод – «минус». При этом место включения резистора в цепь роли не играет.
Простейшая схема подключения ИК-светодиода
Для того чтобы рассчитать номинал токоограничивающего резистора, необходимо знать:
- падение напряжения на светодиоде при прямом включении (есть в паспорте);
- номинальный рабочий ток светодиода (есть в паспорте);
- величину питающего напряжения.
Сам же расчет исключительно прост. Из напряжения питания вычитаем напряжение падения на полупроводнике и находим напряжение падения на резисторе:
U = Uпит. – Uпадения на светодиоде
Теперь рассчитываем номинал резистора, который обеспечит нужный нам ток через цепь, воспользовавшись законом Ома:
R = U/ I
где:
- R – искомое сопротивление резистора в Омах;
- U – падение напряжения на резисторе (см. первую формулу) в вольтах;
- I – номинальный ток через светодиод в амперах.
Если светодиод относительно мощный, то вместо резистора используется драйвер – электронный стабилизатор тока. Понадобится драйвер и в том случае, если питающее напряжение нестабильно.
Подключение светодиода через простейший драйвер, собранный на интегральном стабилизаторе
В нижней части рисунка указано соответствие номинала резистора необходимому току.
Пин-схема инфракрасный светодиод
Инфракрасный светодиод представляет собой диод или простой полупроводник. Электрический ток пропускается только в одном направлении в диодах. По мере протекания тока электроны падают с одной части диода в отверстия на другой части. Чтобы попасть в эти дыры, электроны должны пролить энергию в виде фотонов, которые производят свет.
Необходимо модулировать излучение от Инфракрасного светодиода, чтобы использовать его в электронном приложении для предотвращения ложного срабатывания. Модуляция делает сигнал от Инфракрасного светодиода выше шума. Инфракрасные диоды имеют рассеиватель, который непрозрачен для видимого света, но прозрачен для инфракрасного излучения. Массовое использование Инфракрасных светодиодов в пульте дистанционного управления и системах охранной сигнализации резко сократило цены на Инфракрасные светодиоды на рынке.
Область применения ИК диодов
На данный момент времени светодиоды инфракрасного спектра применяются в следующих областях:
- в медицине. Такие элементы радиосхем служат качественным и эффективным источником для создания направленной подсветки разнообразного медицинского оборудования;
- в охранных системах;
- в системе передачи информации с помощью оптоволоконных кабелей. Благодаря своему особому строению данные изделия способны работать с многомодовым и одномодовым оптоволокном;
- исследовательская и научная сферы. Подобная продукция востребована с процессах накачивания твердотельных лазеров в ходе научных исследованиях, а также подсветки;
- военная промышленность. Здесь они имеют такое же широкое применение в качестве подсветки, как и в медицинской сфере.
Помимо этого, такие диоды встречаются в различном оборудовании:
устройства для дистанционного управления техникой;
ИК диод в пульте дистанционного управления
- разнообразные контрольно-измерительные оптические приборы;
- беспроводные линии связи;
- коммутационные оптронные устройства.
Как видим, сфера применения данной продукции впечатляющая. Поэтому приобрести такие диодные комплектующие для своей домашней лаборатории можно без особых проблем, они в избытке продаются на рынке и в специализированных магазинах.
Разновидности ИК излучающих диодов
Ассортимент светодиодов работающих в инфракрасном спектре насчитывает десятки позиций. Каждому отдельному экземпляру присущи определённые особенности. Но в целом, все полупроводниковые диоды ИК диапазона можно разделить по следующим критериям:
- мощности излучения или максимальному прямому току;
- назначению;
- форм-фактору.
Слаботочные ИК светодиоды предназначены для работы на токах не более 50 мА и характеризуются мощностью излучения до 100 мВт. Импортные образцы изготавливаются в овальном корпусе 3 и 5 мм, который в точности повторяет размеры обычного двухвыводного индикаторного светодиода. Цвет линзы – от прозрачного (water clear) до полупрозрачного голубого или жёлтого оттенка. ИК излучающие диоды российского производства до сих пор производят в миниатюрном корпусе: 3Л107А, АЛ118А. Приборы большой мощности выпускают как в DIP корпусе, так и по технологии smd. Например, SFH4715S от Osram в smd корпусе.
Основные характеристики
Рассмотрим технические характеристики ИК-подсветки:
- длина волны (λ),
- тип излучателя,
- рефлектор (отражатель),
- выходная мощность,
- угол излучения,
- рабочая дальность,
- режимы,
- питание,
- время работы,
- рабочая температура,
- крепление,
- габариты,
- материал,
- цвет,
- вес.
На рис. 4 показаны основные детали камеры видеонаблюдения с внутренней инфракрасной подсветкой.
Рис. 4. Видеокамера для видеонаблюдения с ИК-подсветкой
Для надёжной работы задан начальный диапазон частоты инфракрасного спектра, то есть после частоты красного цвета. Чёткой границы нет. Выбрано 4 диапазона:
- 730–750 нм,
- 830–850 нм,
- 870–880 нм,
- 930–950 нм.
В качестве источника излучения применяются ИК-светодиоды и лазерные инфракрасные диоды. Светодиоды излучают спектр частот, то есть создают мягкое излучение, а лазерные дают более жёсткое излучение. Выпускаются лазерные излучатели с внутренней оптической системой. Такие излучатели формируют узкий луч.
Рефлектор предназначен для образования светового пучка. Геометрический размер его представляет собой равнобедренный треугольник с вершиной у источника света. Угол раскрыва определяется на уровне 0,5 по оси. Средний угол раскрыва составляет 40–80 градусов (угловых)
Важно понимать, что с увеличением угла расхождения лучей расстояние подсветки уменьшается, а мощность прожектора в основном определяет не дальность, а площадь освещения. На рис. 5 показаны внешние подсветки разного вида
В дорогих моделях есть подстройка светового пятна. Рефлектор может быть как металлическим, так и пластмассовым и соответствовать требуемой жаропрочности. Инфракрасные диоды при работе нагреваются. Чем больше их мощность, тем больше нагрев. Поверхность рефлектора бывает текстурированная или гладкая. Спереди от рефлектора находится линза, которая защищает рефлектор и инфракрасный диод от окружающей среды. Изготавливается из стекла или пластмассы.
Мощность излучателей используется от милливатт до десятков ватт.
В пункте «режим» указаны возможные варианты работы. Например, в подсветке типа «хамелеон» возможны варианты:
- строб;
- маячок;
- SOS;
- регулировка излучения: высокое, среднее, низкое, минимальное;
- дистанционное управление.
Для крепления ИК-фонарика к приборам ночного видения используют разнообразные типы приспособлений. Самые распространённые из них — рельсовые планки Weaver и Picatinny, переходники для штативного гнезда с резьбой ¼, стринги для шлема или головы, универсальное крепление под стрелковое оружие. Разница между планками будет в ширине прорези. У планки Вивера = 0,180″, а у Пикатинни = 0,206″, а между центрами – 0,394″ и глубина — 0,118″.
К корпусу предъявляются жёсткие требования. Он должен быть лёгким, ударопрочным, водонепроницаемым. Выдерживать отдачу ружья. В основном выполняется из анодированного высококачественного алюминиевого сплава, так как он работает в жёстких погодных условиях.
Преимущества и недостатки
К достоинствам можно отнести:
- ИК-излучение безопасно для человека и окружающей среды.
- Обеспечивает незаметное освещение охраняемого объекта.
- Использование внешней подсветки улучшает качество изображения. Её можно располагать в любом удобном месте. Решает проблемы встроенной подсветки. Можно подбирать правильный угол освещения, выбирать прибор по мощности, дальности действия и площади покрытия.
К недостаткам относится изображение, которое получается чёрно-белым на цветной камере. Гладкие объекты (поверхность озёр или рек, стеклянные окна, кафель или глянцевая краска, снег, яркость заднего плана) отражают ИК-лучи и создают засвеченные пятна на изображении. Затрудняют видеоизображение также пыль, дождь, туман, летающие насекомые.
Принцип ИК передачи информации
Инфракрасное, или тепловое излучение — это электромагнитное излучение, которое испускает любое нагретое до определенной температуры тело. ИК диапазон лежит в ближайшей к видимому свету области спектра, в его длинноволновой части и занимает область приблизительно от 750 нм до 1000 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, около половины излучения Солнца. Оптические свойства веществ в инфракрасном излучении отличаются от их свойств в видимом свете. Например, некоторые стекла непрозрачны для инфракрасных лучей, а парафин, в отличие от видимого света, прозрачен для ИК излучения и используется для изготовления ИК линз. Для его регистрации используют тепловые и фотоэлектрические приемники и специальные фотоматериалы. Источником ИК лучей, кроме нагретых тел, наиболее часто используются твердотельные излучатели — инфракрасные светодиоды, ИК лазеры, для регистрации применяются фотодиоды, форотезисторы или болометры. Некоторые особенности инфракрасного излучения делают его удобным для применения в устройствах передачи данных:
ИК твердотельные излучатели (ИК светодиоды) компактны, практически безинерционны, экономичны и недороги.
ИК приемники малогабаритны и также недороги
ИК лучи не отвлекают внимание человека в силу своей невидимости
Несмотря на распространенность ИК лучей и высокий уровень «фона», источников импульсных помех в ИК области мало
ИК излучение низкой мощности не сказывается на здоровье человека
ИК лучи хорошо отражаются от большинства материалов (стен, мебели)
ИК излучение не проникает сквозь стены и не мешает работе других аналогичных устройств
Все это позволяет с успехом использовать ИК способ передачи информации во многих устройствах. ИК передатчики и приемники находят применение в бытовой и промышленной электронике, компьютерной технике, охранных системах, системах передачи данных на большие расстояния по оптоволокну. Рассмотрим более подробно работу систем (пультов) управления бытовой электроники.
Пульт ИК управления при нажатии кнопки излучает кодированную посылку, а приемник, установленный в управляемом устройстве, принимает её и выполняет требуемые действия. Для того, чтобы передать логическую последовательность, пульт формирует импульсный пакет ИК лучей, информация в котором модулируется или кодируется длительностью или фазой составляющих пакет импульсов. В первых устройствах управления использовались последовательности коротких импульсов, каждый из которых представлял собою часть полезной информации. Однако в дальнейшем, стали использовать метод модулирования постоянной частоты логической последовательностью, в результате чего в пространство излучаются не одиночные импульсы, а пакеты импульсов определенной частоты. Данные уже передаются закодированными длительностью и положением этих частотных пакетов. ИК приемник принимает такую последовательность и выполняет демодулирование с получением огибающей. Такой метод передачи и приема отличается высокой помехозащищенностью, поскольку приемник, настроенный на частоту передатчика, уже не реагирует на помехи с другой частотой. Сегодня для приема ИК сигнала обычно применяется специальная микросхема, объединяющая фотоприемник, усилитель с полосовым фильтром, настроенным на определенную несущую частоту, усилитель с АРУ и детектор для получения огибающей сигнала. Кроме электрического фильтра, такая микросхема имеет в своем составе оптический фильтр, настроенный на частоту принимаемого ИК излучения, что позволяет в максимальной степени использовать преимущество светодиодного излучателя, спектр излучения которого имеет небольшую ширину. В результате таких технических решений, стало возможным принимать маломощный полезный сигнал на фоне ИК излучения других источников, бытовых приборов, радиаторов отопления и т.д. Работа современных устройств ИК управления достаточно надежна, а дальность составляет от нескольких метров до 40 и более метров, в зависимости от варианта реализации и уровня помех.
Выбираем светодиодную ленту по месту установки
В конце нашего обзора у нас есть несколько советов, какую ленту лучше выбрать для каждой из комнат вашей квартиры или дома.
Для оформления комнат лучше подойдет недорогая светодиодная лента белого цвета без защиты от влаги. Не переборщите с мощностью (световым потоком), если организуете фоновую подсветку, иначе яркий свет будет бить в глаза.
Для подсветки кухни в идеале нужна лента с силиконовым покрытием. Где кухня — там и влага, поэтому защита лишней точно не будет.
Для установки в спальне можно купить многоцветную RGB-ленту. Другой возможный вариант — выбрать ленту для подсветки потолка с возможностью регулировки. Так вы сможете приглушать свет или делать его ярче, когда это необходимо.
Подсвечивать ванную комнату нужно только светодиодной лентой с силиконовым покрытием. Не забудьте позаботиться и о защите блока питания, а также контроллера (если используется)! Самые яркие светодиодные ленты будут здесь лишними — берите поскромнее.
Помимо статичной подсветки с помощью контроллеров можно организовать и динамичные сценарии. Например, организовать вот такую «бегущую волну».
Расшифровка кода маркировки светодиодной ленты
Для того, чтобы понять, как маркируется лента, нужно обратить внимание на таблицу:
1 | Источник света | LED | Светодиод |
2 | Цвет свечения | R | Красный |
G | Зеленый | ||
B | Синий | ||
RGB | Любой | ||
CW | Белый | ||
3 | Способ монтажа | SMD | Surface Mounted Device (Устройство, монтируемое на поверхность) |
4 | Размер чипа | 3028 | 3,0 х 2,8 мм |
3528 | 3,5 х 2,8 мм | ||
2835 | 2,8 х 3,5 мм | ||
5050 | 5,0 х 5,0 мм | ||
5 | Количество светодиодов на метр длины | 30 | |
60 | |||
120 | |||
6 | Степень защиты: | IP | International Protection |
7 | От проникновения твердых предметов | 0-6 | Согласно ГОСТ 14254-96 (стандарт МЭК 529-89) «Степени защиты, обеспечиваемые оболочками (код IP)» |
8 | От проникновения жидкости | 0-6 |
Для примера возьмем конкретную маркировку LED CW SMD5050/60 IP68. Из нее можно понять, что перед нами светодиодная лента белого цвета для поверхностного монтажа. Элементы, установленные на ней, имеют размер 5х5мм, в количестве 60 шт/м. Степень защиты позволяет ей длительное время работать под водой.
Ассортимент ламп для дома на световых диодах довольно широк
Индикаторные светодиоды
Индикаторные
светодиодные чипы наиболее
распространены. Применяются для различной подсветки и индикации, от фонарей и
светофоров до бытовой техники. Современные модификации обладают большой силой
света, хотя это достаточно маломощные
светодиоды.
Функцию
отражателей, концентрирующих световой поток, выполняют стенки и опорная
пластина. Приборы имеют прямоугольные торцы с диаметром 3-10 мм и выпуклые
линзы. Для них требуется источник питания в 2,5-5 В (предел по току – 20-25 мА), а если используется
интегрированный резистор – 12
В. Угол свечения бывает либо
широким (110-140о), либо узким (15-45о). Светоотдача белых светодиодов находится на уровне
3-5 Лм.
Индикаторный диод обладает следующими преимуществами:
- небольшая стоимость;
- безопасные токи и напряжение светодиодов;
- высокий уровень защиты от внешних воздействий;
- небольшое потребление энергии с низкой теплоотдачей, позволяющей устройствам работать продолжительное время без охлаждающих радиаторов.
Среди индикаторных
выделяют следующие типы светодиодов:
Тип светодиода | Строение | Корпус | Цветовой диапазон | Угол рассеяния | Область применения |
DIP | Самые маленькие, кристалл в выводном корпусе | Прямоугольный или цилиндрический, диаметр – от 3 до 10 мм. Имеет выпуклую линзу | Одно- и многоцветный (RGB), УФ и ИК | До 60о | Устройства индикации, световые табло, ёлочные украшения |
Super Flux «Piranha» | Имеет четыре вывода для фиксации на плате | Прямоугольный, с линзой (5 или 3 мм) или без | Зелёный, красный, синий и белые с разной температурой | 40-120о | Подсветка дневных ходовых огней, автомобильных приборов и прочего |
Straw Hat | Два вывода, кристалл расположен возле передней стенки | Цилиндрический, радиус линзы увеличен, высота уменьшена | Синий, зелёный, жёлтый, белый и красный светодиод | 100-140о | Используются, когда требуется равномерное освещение с небольшим энергопотреблением |
SMD | Не имеют вывода, монтируются поверхностно | Типовой размерный ряд, часть с выпуклой линзой, другая – плоские светодиоды | Цветные и белые | 20-120о | Являются основой диодных лент |
Наиболее
технологичной и популярной является группа SMD светодиодов.
Какими бывают
Как выглядит инфракрасный светодиод и можно ли его отличить от обычного? Вопрос довольно сложный, поскольку инфракрасные полупроводники имеют огромное количество форм-факторов – все зависит от их характеристик и назначения.
В компьютерных мышках и в пультах ДУ, к примеру, стоят обычные трехмиллиметровые приборы, в CD-приводах и лазерных принтерах – сверхминиатюрные в SMD или металлостеклянном корпусе. В ИК-прожекторах могут стоять как множество маломощных, так и несколько мощных инфракрасных светодиодов: обычных, диаметром до 10 мм или в SMD корпусе.
Примеры внешнего вида инфракрасных светодиодов
Что касается технических характеристик инфракрасных светодиодов, то основные из них следующие:
- Угол рассеивания. Чем этот параметр выше, тем меньше освещенности приходится на определенную поверхность объекта, но тем большую площадь он покрывает ИК-излучением. Измеряется в градусах телесного угла – стерадианах (Ω).
- Выходная мощность. Измеряется в ваттах (Вт) или милливаттах (мВт) и может колебаться от десятков милливатт до нескольких ватт.
- Рабочий ток. Ток, при котором гарантируются заявленные характеристики, включая наработку на отказ и выходную мощность излучения. Измеряется в амперах (миллиамперах).
- Прямое падение напряжения. Напряжение, которое падает на кристалле при номинальном токе. Зависит от материала кристалла и обычно не превышает 2 вольт.
- Обратное максимально допустимое напряжение. Напряжение обратной полярности, которое выдерживает кристалл без электрического повреждения. Для инфракрасных приборов обычно не превышает 1 вольта.
- Излучаемая длина волны. Если светодиод лазерный, то указывается одна длина волны, и это понятно. Если же это обычный инфракрасный светодиод, то нередко указывается диапазон излучаемых им волн, которые измеряются в нанометрах или микрометрах (нм или мкм).
Маркируются ли светодиоды по цвету?
Маркировка Российских светодиодов достаточно сложна. Для примера приведем лишь небольшую часть таблицы цветовой маркировки.
Светодиод | Материал корпуса | Цвет свечений | Маркировка |
АЛ102А | Металлостекло | Красный | Красная точка |
АЛ102В | -/- | Зеленый | Зеленая точка |
АЛ102Г | -/- | Красный | 3 красные точки |
АЛ102Д | -/- | Зеленый | 2 зеленые точки |
ЗЛ102А | -/- | Красный | Черная точка |
ЗЛ102Б | -/- | Красный | 2 черные точки |
ЗЛ102В | -/- | Зеленый | Белая точка |
ЗЛ102Г | -/- | Красный | 3 Черные точки |
ЗЛ102Д | -/- | Зеленый | 2 белые точки |
АЛ112А | -/- | Красная полоска | |
АЛ112Б | -/- | Зеленая полоска | |
АЛ112В | -/- | Синяя полоска | |
АЛ112Г | -/- | Красная полоска | |
АЛ112Д | -/- | Зеленая полоска | |
АЛ112Е | -/- | Красная точка | |
АЛ112Ж | -/- | Зеленая точка |
Зарубежные элементы маркируются по-разному, в зависимости от страны производителя и фирмы.
Часто маркировка на светодиодной ленте расшифровывается
Спектроскопия
Инфракрасная радиационная спектроскопия – это технология, используемая для определения структур и составов (главным образом) органических соединений путем изучения пропускания ИК-излучения через образцы. Она основана на свойствах веществ поглощать определенные его частоты, которые зависят от растяжения и изгиба внутри молекул образца.
Характеристики инфракрасного поглощения и излучения молекул и материалов дают важную информацию о размере, форме и химической связи молекул, атомов и ионов в твердых телах. Энергии вращения и вибрации квантуются во всех системах. ИК-излучение энергии hν, испускаемое или поглощаемое данной молекулой или веществом, является мерой разности некоторых внутренних энергетических состояний. Они, в свою очередь, определяются атомным весом и молекулярными связями. По этой причине инфракрасная спектроскопия является мощным инструментом определения внутренней структуры молекул и веществ или, когда такая информация уже известна и табулирована, их количества. ИК-методы спектроскопии часто используются для определения состава и, следовательно, происхождения и возраста археологических образцов, а также для обнаружения подделок произведений искусства и других предметов, которые при осмотре под видимым светом напоминают оригиналы.
Светодиодная лента для комнаты или для улицы
Теперь мы подошли к вопросу о том, где именно вы будете устанавливать LED ленту, а, значит, поговорим о степенях защиты.
Логично, что если вы собираетесь организовать подсветку комнаты, защита как таковая вам не нужна (если это, конечно, не ванная комната). А вот для использования на крыльце или других поверхностях снаружи дома защита от воды необходима.
Есть 3 типа светодиодных лент — обычная, силиконовая и упрятанная в поливинилхлоридную трубку. Если вам хочется установить подсветку в шкафу, на полках или в потолке, то смело выбирайте самый простой, первый вариант. Второй и третий идеально подойдут подсветки улицы и помещений, где есть вероятность попадания влаги на ленту. Разница между этими типами скорее чисто визуальная: силиконовая выглядит аккуратнее. К слову, блоки питания выбирайте по такому же принципу. Для дома можно приобрести блок с защитой по сертификату IP20, а для улицы — с сертификацией IP65 и выше.
Также не в последнюю очередь стоит обращать внимание на производителя. Если у вас есть возможность выбрать ленту по этому критерию, то ищите продукцию компании Gauss или Elektrostandart
Качество будет соответствовать цене, так что их ленты будут стоить дороже аналогов. Если хочется сэкономить, то можно купить LED ленту даже китайских производителей MAXUS или Feron.
Также обратите внимание на то, насколько гибким является основание ленты. Если оно слишком легко гнется, значит токоведущие дорожки могут быть слишком тонкими, и срок службы изделия будет коротким
Источник: