Проверка светодиодов на работоспособность

Как проверить светодиод мультиметром (тестером) на работоспособность?

Проверка светодиода мультиметром является наиболее простым и правильным способом определения его работоспособности. Цифровой мультиметр (тестер) – это многофункциональный измерительный прибор, возможности которого отражены в позициях переключателя на передней панели. На работоспособность светодиоды проверяются при помощи функций, присутствующих в любом тестере. Методы проверки рассмотрим на примере цифрового мультиметра DT9208A. Но сначала немного затронем тему причин неисправности новых и выхода из строя старых светоизлучающих диодов.

Основные причины неисправности и выхода из строя светодиодов

Особенность любого излучающего диода – низкий предел обратного напряжения, который лишь на несколько вольт превышает падение на нём в открытом состоянии. Любой электростатический разряд или неверное подключение в ходе наладки схемы может стать причиной выхода LED (аббревиатура от англ.

Light-emitting diode) из строя. Сверхъяркие малоточные светодиоды, применяемые в роли индикаторов питания различных устройств, часто перегорают в результате скачков напряжения. Их планарные аналоги (SMD LED) широко используются в лампах на 12 В и 220 В, лентах и фонариках.

В их исправности также можно убедиться с помощью тестера.

Стоит отметить, что небольшая доля бракованных (около 2%) светодиодов поставляется от производителя. Поэтому дополнительная проверка светодиода тестером перед монтажом на печатную плату не помешает.

Методы диагностики

Простейшим способом, которым чаще всего пользуют радиолюбители, является проверка светоизлучающих диодов мультиметром на работоспособность при помощи щупов. Способ удобен для всех типов светоизлучающих диодов, независимо от их исполнения и количества выводов. Установив переключатель в положение «прозвонка, проверка на обрыв», щупами касаются выводов и наблюдают за показаниями. Замыкая красный щуп на анод, а черный на катод исправный светодиод должен засветиться. При смене полярности щупов на экране тестера должна оставаться цифра 1.

Свечение излучающего диода во время проверки будет небольшой и на некоторых светодиодах при ярком освещении может быть незаметно.

Для точной проверки многоцветных LED с несколькими выводами необходимо знать их распиновку. В противном случае придется наугад перебирать выводы в поисках общего анода или катода. Не стоит бояться тестировать мощные светодиоды с металлической подложкой. Мультиметр не способен вывести их из строя, путём замера в режиме прозвонки.

Проверку светодиода мультиметром можно выполнить без щупов, используя гнёзда для тестирования транзисторов. Как правило, это восемь отверстий, расположенных в нижней части прибора: четыре слева для PNP транзисторов и четыре справа для NPN транзисторов. PNP транзистор открывается подачей положительного потенциала на эмиттер «Е». Поэтому анод нужно вставить в гнездо с надписью «Е», а катод – в гнездо с надписью «С». Исправный светодиод должен засветиться.

Для тестирования в отверстиях под NPN транзисторы нужно сменить полярность: анод — «С», катод – «Е». Таким методом удобно проверять светодиоды с длинными и чистыми от припоя контактами

При этом неважно, в каком положении находится переключатель тестера. Проверка инфракрасного светодиода происходит также, но имеет свои нюансы из-за невидимого излучения

В момент касания щупами выводов рабочего ИК светодиода (анод – плюс, катод – минус) на экране прибора должно высветиться число около 1000 единиц.

При смене полярности на экране должна быть единица.

Для проверки ИК диода в гнёздах тестирования транзисторов дополнительно придётся задействовать цифровую камеру (смартфон, телефон и пр.) Инфракрасный диод вставляют в соответствующие отверстия мультиметра и сверху на него направляют камеру. Если он в исправном состоянии, то ИК излучение будет отображаться на экране гаджета в виде светящегося размытого пятна.

Проверка мощных SMD светодиодов и светодиодных матриц на работоспособность кроме мультиметра требует наличия токового драйвера. Мультиметр включают последовательно в электрическую цепь на несколько минут и следят за изменением тока в нагрузке. Если светодиод низкого качества (или частично неисправный), то ток будет плавно нарастать, увеличивая температуру кристалла. Затем тестер подключают параллельно нагрузке и замеряют прямое падение напряжения. Сопоставив измеренные и паспортные данные из вольт-амперной характеристики можно сделать вывод о пригодности LED к эксплуатации.

Как проверить светодиод?

Хоть какой электростатический разряд либо неправильное подключение в процессе наладки схемы может стать предпосылкой выхода LED аббревиатура от англ. Light-emitting diode из строя. Сверхъяркие малоточные светодиоды, используемые в роли индикаторов питания разных устройств, нередко перегорают в итоге скачков напряжения. Их планарные аналоги SMD LED обширно употребляются в лампах на 12В и В, лентах и фонариках. В их исправности также можно убедиться при помощи тестера. Потому дополнительная проверка светодиода тестером перед монтажом на интегральную схему не помешает. Простым методом, которым в большинстве случаев пользуют радиолюбители, является проверка светоизлучающих диодов мультиметром на работоспособность с помощью щупов.

Используйте круглую батарею, чтобы проверить светодиод, не сжигая его. Аккумуляторная батарея – это самый безопасный вариант, потому что они не дадут достаточный ток для повреждения светодиода. Тестирование с помощью любого другого типа батарей может привести к выгоранию светодиода. Покупайте эти батареи в аптеках, универмагах, магазинах или в Интернете.

  • Используйте либо аккумуляторы с ячейками CR2032, либо CR2025.
  • Приобретите соответствующий держатель батареи с ячейками. Купите тот, который сделан для хранения типа  круглой батареи (например, CR2025), с которой вы будете тестировать. Вы можете найти их в Интернете или в некоторых магазинах оборудования или электроники. Убедитесь, что держатель имеет красный и черный провода для проверки светодиодных индикаторов. Держатели аккумуляторов для монетных батарей обычно используются для добавления энергии аккумулятора в небольшие проекты, такие как светодиодные украшения или одежда.

    Подключите черный провод к катоду, а красный – к аноду. Чтобы проверить свой светодиод, коснитесь кончика черного зонда на катоде или более короткого конца светодиода. Прикоснитесь к наконечнику красного зонда к аноду, который должен быть длиннее. Убедитесь, что оба датчика не касаются друг друга во время теста и что катод и анод не касаются друг друга.

    • Некоторые держатели батарей с выводами поставляются с небольшим разъемом на конце, держа кончики двух выводов.
    • Если ваш держатель батареи имеет соединительный разъем, проверьте свой светодиод, вставив анод и катод в маленькие отверстия, которые выстраиваются в линию с красными и черными проводами.

    Подождите, пока светодиод загорится. 

    Если светодиод функционирует и правильные соединения выполнены правильно, ваш светодиод засветится, как только вы все сделаете правильно. Если это не так, уберите и снова подключите выводы и катод / анод, чтобы повторить попытку. Если ваш индикатор не загорается, он может быть сгорел или неисправен.

Стоит ли ремонтировать энергосберегающие лампы

Решение о том, ремонтировать или не ремонтировать лампу, во многом зависит от количества неисправных источников света. Если речь идет о единственной перегоревшей лампочке, не стоит связываться с трудоемким процессом ремонта. Когда ламп много, ремонт обретает экономический смысл. Из частей нескольких ламп реально собрать одну, которая будет работоспособной. Из практики известно, что для сборки одной лампочки понадобятся детали от 3–4 испорченных источников света.

Принимая решение о ремонте лампы, стоит подумать о предстоящих затратах. Придется потратиться на покупку деталей (если их нельзя взять из лампочек, которые перегорели), на поездку в магазин или на рынок. Кроме того, процесс поиска и причин достаточно трудоемок, поэтому следует учесть и затраты времени.

Инфракрасные СД

Наверняка у каждого человека в квартире имеется как минимум один пульт дистанционного управления. Рано или поздно приходит день, когда пульт перестает выполнять свои функции (передача сигнала в фотоприемник). После проверки батареек наиболее вероятной причиной повреждения может стать неисправный светодиод.

Протестировать инфракрасный LED можно следующим образом. Поверните дистанционный пульт СД в сторону фотоаппарата. Для этого подойдет любой гаджет с фотокамерой. Инфракрасное излучение невозможно увидеть, но при использовании этих устройств ситуация в корне поменяется. В случае работоспособности светодиода на экране появится кратковременное свечение фиолетового оттенка.

Еще один тестер светодиодов, главным элементом которого является инфракрасный фотодиод – осциллограф. При попадании инфракрасного излучения на поверхность фотоэлемента на его выходе создается напряжение. Для проверки СД его необходимо подсоединить к открытому входу осциллографа. Затем следует направлять его излучение на чувствительную зону фотодиода.

Проверка диода цифровым мультиметром

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром. Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение ( +), а к катоду – отрицательное, т.е. (—). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (—), а к катоду положительное ( +), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе. Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой (—) вывод тестера, а к катоду плюсовой ( +), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

Проверка работоспособности диода, светодиода, стабилитрона.

  • Устанавливаем прибор в режим прозвонки, если такого режима нет, то в режим измерения сопротивления 1кОм;
  • Убеждаемся, что щупы прибора подключены в нужные нам гнезда мультиметра;
  • Провод красного цвета подсоединяется к аноду, а провод черного цвета — к катоду;
  • Производим измерение. В режиме прозвонки, при подключении диода прибор показывает падение напряжения от 200 до 400 мВ для германиевых диодов, от 500 до 700 мВ для кремниевых. При измерении сопротивления прибор будет показывать сопротивление диода. К примеру, для германиевых элементов сопротивление составляет от 100 килоом до 1 магаома, для элементов выполненных из кремния этот показатель равен 1000 мегаом. Если проверяется выпрямительный полупроводник, то значение еще более высокое. Это обязательно нужно учитывать, чтобы не допустить ошибку при определении результатов;
  • Меняем местами красный и черный щуп прибора;
  • Производим измерение. Если диод подключить в обратном направлении, то прибор будет показывать единицу «1», то есть величина сопротивления или напряжения утечки бесконечно большая;
  • Нужно помнить, что может быть вовсе не поломка, а утечка. Этот вариант возможен в двух случаях, если прибор долго находился в эксплуатации или же сборка его была выполнена не качественно. Если имеется короткое замыкание или утечка, то прибор покажет низкое сопротивление. Причем при определении результата нужно учитывать вид полупроводника.
  • Делаем выводы о работоспособности элемента.

Будет интересно Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Если все показатели соблюдены, то можно смело сказать, что он работает правильно и исправен. А вот если хотя бы один параметр не верный, то это свидетельствует о том, что элемент нужно заменить.

Проверка диода.

Как проверить светодиод мультиметром?

Тестирование светодиодных устройств ламп или просто светодиодов гораздо проще с цифровым мультиметром, который даст вам четкое представление о том, насколько сильны каждый из светодиодов. Яркость светодиода при его тестировании также укажет на его качество. Если у вас нет мультиметра для использования, простой держатель батареи для круглых батарей с выводами даст вам знать, работают ли ваши светодиоды.

Как проверить светодиод мультиметром?

Приобретите цифровой мультиметр, который может проверять диоды.  Мультиметры измеряют только показатели, вольт и омы. Для тестирования светодиодных индикаторов вам понадобится мультиметр с настройкой диода. Проверьте онлайн или в местном магазине аппаратных средств для мультиметров среднеценового и высокоценового диапазона, которые, скорее всего, будут иметь эту функцию, в сравнении с  недорогими моделями.

Подключите красный и черный измерительные провода. Красный и черный измерительные провода должны быть подключены к выходам на передней панели мультиметра. Красный провод – положительный заряд. Черный провод является отрицательным и должен быть подключен к входу с надписью «COM».
Поверните колесико мультиметра в положение диода. Поверните циферблат на передней панели мультиметра по часовой стрелке, чтобы отодвинуть его от положения «выключено». Продолжайте поворачивать его, пока не приземлитесь на настройку диода. Если он не помечен явно, настройка диода может быть представлена ​​символом схемы диода.

Символ диода визуально представляет собой как его клеммы, так и катод и анод

Подключите черный зонд к катоду и красный зонд к аноду. Прикоснитесь к черному зонду к катодному концу светодиода, который обычно является более коротким. Затем нажмите красный зонд на анод, который должен быть длинным. Обязательно подключите черный зонд перед красным зондом, так как обратное может не дать вам точного показания.

  • Убедитесь, что катод и анод не касаются друг друга во время этого теста, что может препятствовать прохождению тока через светодиодный индикатор и затруднять результаты.
  • Черные и красные контакты также не должны касаться друг друга во время теста.
  • Выполнение соединений должно привести к тому, что светодиод засветится.

Проверьте значение на цифровом дисплее мультиметра. Когда контакты мультиметра касаются катода и анода, неповрежденный светодиод должен отображать напряжение приблизительно 1600 мВ. Если во время теста на экране не появляется показаний, повторите попытку, чтобы убедиться, что соединения выполнены правильно. Если вы правильно выполнили тест, это может быть признаком того, что светодиодный индикатор не работает.

Метод комфортен для всех типов светоизлучающих диодов, независимо от их выполнения и количества выводов. Замыкая красноватый щуп на анод, а темный на катод исправный светодиод должен засветиться. При смене полярности щупов на дисплее тестера должна оставаться цифра 1. Свечение излучающего диодика во время проверки будет маленький и на неких светодиодах при ярчайшем освещении может быть неприметно. Для четкой проверки разноцветных LED с несколькими выводами следует знать их распиновку. В неприятном случае придется наобум перебирать выводы в поисках общего анода либо катода. Не стоит страшиться тестировать массивные светодиоды с железной подложкой. Мультиметр не способен вывести их из строя, методом замера в режиме прозвонки. Проверку светодиода мультиметром можно выполнить без щупов, используя гнезда для тестирования транзисторов.

Оцените яркость светодиода. Когда вы делаете правильные подключения для проверки своего светодиода, он должен засветится. Отметив показания на цифровом экране, посмотрите на сам светодиод. Если он не нормально светится, выглядит тусклым, это, скорее всего, некачественный светодиод. Если он сияет ярко, это,скорее всего качественный рабочий светодиод.

Мы надеемся, что в данной статье вы нашли все ответы на вопросы

Определяем характеристики диодов

Соберите простейшую схему для снятия характеристик светодиода. Она на столько проста, что можно это сделать, не используя паяльник.

Давайте сначала рассмотрим, как узнать мультиметром на сколько вольт наш светодиод, с помощью такого пробника. Для этого внимательно следуйте инструкции:

Соберите схему. В разрыв цепи (на схеме «mA») установите мультиметр в режиме измерения тока.
Переведите потенциометр в положение максимального сопротивления

Плавно убавляйте его, следите за свечением диода и ростом тока.
Узнаём номинальный ток: как только увеличение яркости прекратится, обратите внимание на показания амперметра. Обычно это порядка 20мА для 3-х, 5-ти и 10-ти мм светодиодов

После выхода диода на номинальный ток яркость свечения почти не изменяется.
Узнаём напряжение светодиода: подключите вольтметр к выводам LED. Если у вас один измерительный прибор, тогда исключите из неё амперметр и в цепь подключите тестер в режиме измерения напряжения параллельно диоду.
Подключите питание, снимите показания напряжения (см. подключение «V» на схеме). Теперь вы знаете на сколько вольт ваш светодиод.
Как узнать мощность светодиода мультиметром с помощью этой схемы? Вы уже сняли все показания для определения мощности, нужно всего лишь умножить миллиамперы на Вольты, и вы получите мощность, выраженную в милливаттах.

Однако на глаз определить изменение яркости и вывести светодиод на номинальный режим крайне сложно, нужно иметь большой опыт. Упростим процесс.

Таблицы в помощь

Чтобы уменьшить вероятность сжигания диода определите по внешнему виду на какой из типов светодиодов он похож. Для этого есть справочники и сравнительные таблицы, ориентируйтесь на справочный номинальный ток, когда проводите процесс снятия характеристик.

Если вы видите, что на номинальном значении он явно не выдает полного светового потока, попробуйте кратковременно превысить ток и посмотрите продолжает ли также быстро как ток нарастать и яркость. Следите за нагревом LED’а. Если вы подали слишком большую мощность – диод начнет усиленно греться. Условно нормальной будет температура при которой держать руку на диоде нельзя, но при касании ожога он не оставляет (70-75°C).

Чтобы понять причины и следствия проделывания данной процедуры ознакомьтесь со статьёй о ВАХ диода.

После всей проделанной работы проверьте себя еще раз – сравните показания приборов с табличными значениями светодиодов, подберите ближайшие подходящие по параметрам и откорректируйте сопротивление цепи. Так вы гарантированно определите напряжение, ток и мощность LED.

В качестве питания схемы подойдет батарейка крона 9В или аккумулятор 12В, кроме этого вы определите общее сопротивление для подключения светодиода к такому источнику питания – измерьте сопротивления резистора и потенциометра в этом положении.

Проверить диод очень просто, однако на практике бывают разные ситуации, поэтому возникает много вопросов, особенно у новичков. Опытный электронщик по внешнему виду определит параметры большинства светодиодов, а в ряде случае и их исправность.

Применение специального тестера

Для более сложных проверок нужно пользоваться специальным тестером микросхем, который можно приобрести или сделать своими руками. При прозвонке отдельных узлов микросхемы на экран дисплея будут выводиться данные, анализируя которые можно прийти к выводу об исправности или неисправности элемента. Стоит не забывать, что для полноценной проверки микросхемы нужно полностью смоделировать ее нормальный режим работы, то есть обеспечить подачу напряжения нужного уровня. Для этого проверку стоит проводить на специальной проверочной плате.

Зачастую, осуществить проверку микросхемы, не выпаивая элементы, оказывается невозможным, и каждый из них должен прозваниваться отдельно. О том, как прозвонить отдельные элементы микросхемы после выпаивания будет рассказано далее.

Анализ работоспособности диодов и радиоламп

Радиолампы представляют собой ламповые диоды, использовавшиеся ранее в электронном оборудовании. В настоящее время они заменены полупроводниковыми диодами. Тестирование любых видов диодов, в том числе радиоламп, с помощью мультиметра имеет свои особенности.

Диод имеет два полюса – катод и анод. Если поднести положительный щуп мультиметра (красный) к аноду, а отрицательный (черный) к катоду, ток будет протекать через диод. На экране мультиметра отобразится пороговое напряжение, величина которого может колебаться от 200 до 800 мВ.

Если поменять местами щупы тестера, ток протекать не будет, поскольку диод обладает однонаправленной проходимостью. В случае с радиолампой сопротивление нужно определять между нитью накала, являющейся катодом, и управляющей сеткой.

Существует специальный прибор, называемый тестер ламп. Такие анализаторы, обеспечивающие проверку электроламп, снабжены приспособлениями для испытания вакуума. Эти приборы полезны не только как испытатели, но и как анализаторы для быстрого измерения рабочего режима ламповых элементов любого радиоаппарата.

Испытатель несколько отличается от мультиметра, он больше похож на стенд и позволяет измерять анодно-сеточные характеристики. На нем присутствуют гнезда для лампочек, миллиамперметр, работающий как милливольтметр, а также источники питания. Для любителей старых ламповых приемников тестер становится отличным помощником в работе.

Определяем характеристики диодов

Соберите простейшую схему для снятия характеристик светодиода. Она на столько проста, что можно это сделать, не используя паяльник.

Давайте сначала рассмотрим, как узнать мультиметром на сколько вольт наш светодиод, с помощью такого пробника. Для этого внимательно следуйте инструкции:

Соберите схему. В разрыв цепи (на схеме «mA») установите мультиметр в режиме измерения тока.
Переведите потенциометр в положение максимального сопротивления

Плавно убавляйте его, следите за свечением диода и ростом тока.

Узнаём номинальный ток: как только увеличение яркости прекратится, обратите внимание на показания амперметра. Обычно это порядка 20мА для 3-х, 5-ти и 10-ти мм светодиодов

После выхода диода на номинальный ток яркость свечения почти не изменяется.

Узнаём напряжение светодиода: подключите вольтметр к выводам LED. Если у вас один измерительный прибор, тогда исключите из неё амперметр и в цепь подключите тестер в режиме измерения напряжения параллельно диоду.
Подключите питание, снимите показания напряжения (см. подключение «V» на схеме). Теперь вы знаете на сколько вольт ваш светодиод.

Как узнать мощность светодиода мультиметром с помощью этой схемы? Вы уже сняли все показания для определения мощности, нужно всего лишь умножить миллиамперы на Вольты, и вы получите мощность, выраженную в милливаттах.

Однако на глаз определить изменение яркости и вывести светодиод на номинальный режим крайне сложно, нужно иметь большой опыт. Упростим процесс.

Таблицы в помощь

Чтобы уменьшить вероятность сжигания диода определите по внешнему виду на какой из типов светодиодов он похож. Для этого есть справочники и сравнительные таблицы, ориентируйтесь на справочный номинальный ток, когда проводите процесс снятия характеристик.

Если вы видите, что на номинальном значении он явно не выдает полного светового потока, попробуйте кратковременно превысить ток и посмотрите продолжает ли также быстро как ток нарастать и яркость. Следите за нагревом LED’а. Если вы подали слишком большую мощность – диод начнет усиленно греться. Условно нормальной будет температура при которой держать руку на диоде нельзя, но при касании ожога он не оставляет (70-75°C).

Чтобы понять причины и следствия проделывания данной процедуры ознакомьтесь со статьёй о ВАХ диода.

После всей проделанной работы проверьте себя еще раз – сравните показания приборов с табличными значениями светодиодов, подберите ближайшие подходящие по параметрам и откорректируйте сопротивление цепи. Так вы гарантированно определите напряжение, ток и мощность LED.

В качестве питания схемы подойдет батарейка крона 9В или аккумулятор 12В, кроме этого вы определите общее сопротивление для подключения светодиода к такому источнику питания – измерьте сопротивления резистора и потенциометра в этом положении.

Проверить диод очень просто, однако на практике бывают разные ситуации, поэтому возникает много вопросов, особенно у новичков. Опытный электронщик по внешнему виду определит параметры большинства светодиодов, а в ряде случае и их исправность.

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Ошибка №7 – Продолжительность замеров

Ток в пределах до 10А нельзя измерять более 10 секунд. Даже китайцы делают об этом предупреждающую надпись на корпусе.

Очень часто такие токи появляются при проверке работоспособности батареек. Батарейка через мультиметр замыкается накоротко и контролируется ее ток.

Токоизмерительный шунт при измерениях больших величин сильно разогревается и может перегореть.

И вообще запомните — мультиметры не предназначены для длительного мониторинга измеряемых величин. Все замеры с их помощью делаются кратковременно.

Приложил щупы, увидел показания, убрал. Нельзя мультиметром непрерывно контролировать ток или напряжение наподобие стационарных приборов.

В сети при отключении-включении оборудования зачастую происходят коммутационные перенапряжения. Кратковременный импульс от них иногда может достигать нескольких киловольт.

Мультиметры, не имеющие никакой защиты от таких импульсов, просто выйдут из строя при первой же серьезной коммутации.

Как проверить светодиоды в фонарике

Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.

Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.

Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.

Проверка дуговой ртутной лампы

Светильник с дуговой ртутной люминофорной лампой (ДРЛ) обычно можно встретить на улице или в заводском цехе. Для определения работоспособности прозванивают дроссель – устройство, ограничивающее ток, питающий ДРЛ.

Если схема была разорвана, то сопротивление будет неограниченно большим, что и покажет прибор. Если имеется потеря изоляции, ведущая к короткому замыканию, показатель повышается незначительно. В случае наличия замыкания в обмотке дросселя, сопротивление не меняется.

Если при проверке тестером дросселя проблем не было выявлено, то дуговая лампочка может не функционировать по причине неисправностей в системе подачи электроэнергии, к примеру, из-за окисления контактов. Принцип работы светильника очень простой, поэтому неисправности непосредственно в лампе ДРЛ встречаются редко.

Источник: ledsshop.ru

Тёплый Дом