Последствия при падении напряжения по длине кабеля и расчет потерь

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность. Для проведения расчетов падения напряжения в кабеле используют формулу:

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Как воспользоваться калькулятором онлайн?

В готовую таблицу нужно ввести данные согласно выбранному материалу кабеля, мощность нагрузки системы, напряжение сети, температуру кабеля и способ его прокладки. После нажать кнопку «вычислить» и получить готовый результат. Такой расчет потерь напряжения в линии можно смело применять в работе, если не учитывать сопротивление кабельной линии при определенных условиях:

  • Указывая коэффициент мощности косинус фи равен единице.
  • Линии сети постоянного тока.
  • Сеть переменного тока с частотой 50 Гц выполненная проводниками с сечениями до 25.0-95.0.

Полученные результаты необходимо использовать согласно каждому индивидуальному случаю, учитывая все погрешности кабельно-проводниковой продукции.

Обязательно заполняйте все значения!

Расчет потерь напряжения в кабеле

Для того чтобы обеспечить подачу напряжения от распределительного устройства к конечному потребителю используются линии электропередач. Они могут быть воздушными или кабельными и имеют значительную протяженность.

Как и все проводники, они имеют сопротивление, которое зависит от длины и чем они протяжение, тем больше потеря напряжения.

Чтобы оборудование работало без сбоев, эти потери нормируются. Они суммарно должны иметь значение, не превышающее 9%.

Максимальное понижение напряжение на вводе составляет пять процентов, а до самого удаленного потребителя не более четырех процентов. В трехфазной сети при трех или четырех проводной сети этот показатель не должен превышать 10%.

Расчет падения напряжения на проводе для постоянного тока

Теперь по формуле (2) рассчитаем падение напряжения на проводе:

U = ((ρ l) / S) I , (4)

То есть, это то напряжение, которое упадёт на проводе заданного сечения и длины при определённом токе.

Вот такие табличные данные будут для длины 1 м и тока 1А:

Таблица 1. Падение напряжения на медном проводе 1 м разного сечения и токе 1А:

S, мм² 0,5 0,75 1 1,5 2,5 4 6 8 10
U, B 0,0350 0,0233 0,0175 0,0117 0,0070 0,0044 0,0029 0,0022 0,0018

Эта таблица не очень информативна, удобнее знать падение напряжения для разных токов и сечений. Напоминаю, что расчеты по выбору сечения провода для постоянного тока проводятся по формуле (4).

Таблица 2. Падение напряжения при разном сечении провода (верхняя строка) и токе (левый столбец). Длина = 1 метр

Что такое падение напряжения

При измерении в разных частях провода, по которому течёт электрический ток, по мере движения от источника к нагрузке наблюдается изменение потенциала. Причина этого – сопротивление проводов.

Закон Ома

Как замеряется падение напряжения

Измерить падение можно тремя способами:

  • Двумя вольтметрами. Замеры производятся в начале и конце кабеля;
  • Поочерёдно в разных местах. Недостаток метода в том, что при переходах может измениться нагрузка или параметры сети, что повлияет на показания;
  • Одним прибором, подключённым параллельно кабелю. Падение напряжения в кабеле мало, а соединительные провода большой длины, что приводит к погрешностям.

Принцип замера потерь напряжения в кабеле

Что влияет на нагрев проводов?

Если во время эксплуатации бытовых приборов нагревается проводка, то следует незамедлительно принять все необходимые меры для устранения этой проблемы. Факторов, влияющих на нагрев проводов, существует немало, но к основным можно отнести следующие:

  1. Недостаточная площадь сечения кабеля. Выражаясь доступным языком, можно сказать так — чем толще будут у кабеля жилы, тем больший ток он может передавать, не греясь при этом. Величина этого значения указывается в маркировке кабельной продукции. Также можно измерить сечение самостоятельно при помощи штангенциркуля (следует убедиться, что провод не находится под напряжением) или по марке провода.
  2. Материал, из которого изготовлен провод. Медные жилы лучше передают напряжение до потребителя, и обладают меньшим сопротивлением, по сравнению с алюминиевыми. Естественно, они меньше греются.
  3. Тип жил. Кабель может быть одножильным (жила состоит из одного толстого стержня) или многожильным (жила состоит из большого числа маленьких проводков). Многожильный кабель более гибкий, но существенно уступает одножильному по допустимой силе передаваемого тока.
  4. Способ укладки кабеля. Плотно уложенные провода, находящиеся при этом в трубе, греются ощутимо сильнее, нежели открытая проводка.
  5. Материал и качество изоляции. Недорогие провода, как правило, имеют изоляцию низкого качества, что отрицательно сказывается на их устойчивости к воздействию высоких температур.

Источник

Результат падения напряжения

А что становится результатом этого процесса в фундаментальном смысле?

Давайте посмотрим, что происходит при снижении этой характеристики электрической энергии.

В соответствии с нормативной документацией ПУЭ, потери при движении тока от трансформаторной подстанции до самого отдаленного участка по электрической нагрузке для населенного пункта должны быть не более 9 %.

При этом потери в размере 4 % разрешаются от главного ввода до потребителя электроэнергии, а 5 % – от трансформатора до главного ввода.

В трехфазных коммуникациях нормативный показатель по ГОСТ 29322-2014 составляет 400 В ± 10 % при нормальной эксплуатации линии.

Отклонение этой величины от норматива может приводить к следующим результатам для стационарных объектов или электрических приборов.

  1. Сбои в работе электроустановок, неправильная работа оборудования, выход его из строя, нарушение освещения объекта.
  2. Отключение электроприборов или сбои их корректной работы.
  3. Понижение ускорения вращения у электрических двигателей при старте, потери энергии, отключение устройств при нагреве.
  4. Некорректное распределение электронагрузки от начала линии до удаленного конца провода между объектами потребления.
  5. Работа на 50 % осветительных устройств помещения.

Нормальным значением для потерь при стандартном рабочем режиме электролинии является 5 %.

Эту величину допускается принимать для электросетей на этапе проекта.

Относительно токов большой мощности строятся протяженные электрические магистрали.

Рассчитываем падение напряжения

При вычислении обязательно учитываем активное и реактивное сопротивления, составляющие комплексное (общее) сопротивление цепи, а также мощность.

Формула для расчета этого показателя на участке цепи длиной L выглядит так:

∆U = (P * r + Q * x) * L / Uном,

где

  • P — активная мощность;
  • Q — реактивная мощность;
  • r — активное сопротивление;
  • x — реактивное сопротивление;
  • Uном — номинальное напряжение.

Как мы сказали выше, на практике допускаются отклонения от нормативного показателя по ПУЭ. Разрешенные пределы отклонения:

  • силовые линии – ±5 %;
  • внутреннее и наружное бытовое освещение – ±5 %;
  • производственное освещение (также для общественных зданий) – от +5 % до -2,5 %.

В итоге вычисления мы получим процентный показатель.

Возможности для снижения потерь

Основным способом снижения потерь в кабеле, является увеличение площади его сечения. Кроме того, можно уменьшить длину проводника и снизить нагрузку. Однако последние два способа не всегда можно использовать, в силу технических причин. Поэтому во многих случаях единственным вариантом остается снижение сопротивления кабеля за счет увеличения сечения.

Существенным недостатком большого сечения считается заметный рост материальных затрат. Разница становится ощутимой, когда кабельные системы растягиваются на большие расстояния. Поэтому на стадии проектирования нужно сразу же подбирать кабель с нужным сечением, для чего понадобятся расчеты потери мощности с помощью калькулятора. Данная программа имеет большое значение при составлении проектов на электромонтажные работы, поскольку ручные вычисления занимают много времени, а в режиме онлайн калькулятора подсчет занимает буквально несколько секунд.

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Причины, приводящие к снижению напряжения

Потери напряжения в линии электропередач возникают по следующим причинам:

  • По проводу проходит ток, который нагревает его, в результате увеличивается активное и емкостное сопротивление;
  • Трехфазный кабель при симметричной нагрузке имеет одинаковые значения напряжения на жилах, а ток нулевого провода будет стремиться к нулю. Это справедливо если нагрузка постоянная и чисто активная, что в реальных условиях невозможно;
  • В сетях, кроме активной нагрузки, имеется реактивная нагрузка в виде обмоток трансформатора, реакторов и т.п. и как следствие в них появляется индуктивная мощность;
  • В результате сопротивление будет складываться из активного, емкостного и индуктивного. Оно влияет на потери напряжения в сети.

Потери тока зависят от длины кабеля. Чем он протяжение, тем больше сопротивление, а это значит, что и потери значительнее. Отсюда следует, что потери мощности в кабеле зависят от протяженности или длины линии.

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь. Таблица значений индуктивных сопротивлений. Таблица значений индуктивных сопротивлений

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра. Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз). Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз)

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Советуем изучить — Влияние изменения частоты на работу электрических систем

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Допустимая потеря напряжения

Методы арифметического подсчета воздушных электронных сетей с проводами из различных материалов по потере напряжения. Допустимую потерю напряжения в электронной сети определяют по вероятно разрешенным отклонениям напряжения у потенциальных пользователей. Поэтому рассмотрению запроса для ответа об отклонениях напряжения уделено значительный интерес.

Для всякого приемника электрической энергии возможны конкретные падения вольтажа. К примеру, неодновременные силовые агрегаты в стандартных нормах допустимое отклонение аномалий напряжения ±5%. Это обозначает следовательно, что в курьезном инциденте если номинальное вольтажа предоставленного электрического двигателя составит 380 В, из этого вольтажа U’доп = 1,05 Uн = 380 х 1,05 = 399 В и U»доп = 0,95 Uн = 380 х 0,95 = 361 В нужно исходить из его наиболее вероятно дозволительными индикаторами вольтажа. Конечно же, что все буферные вольтажи, вмещенные среди обозначениями 361 и 399 В, еще будут довольствовать покупающего пользователя и скомпонуют некий диапазон, тот или иной без вариантов можно прозвать диапазоном желаемых напряжений.

Сокращение потерь

Вполне очевидно, что потери зависят от длины проводника в магистрали. Чем этот параметр выше, тем сильнее упадет напряжение. Для сокращения потерь можно использовать несколько методов:

  • Увеличить сечение проводника для равномерного распределения нагрузки на линии.
  • Уменьшить длину кабеля, что не всегда возможно.
  • Снизить мощность тока, передаваемого по проводу большой протяженности.

Последний способ отлично работает в электросетях, имеющих несколько резервных линий. Также следует помнить, что напряжение может падать при условии увеличения температуры кабеля. Если во время прокладки кабеля использовать дополнительные мероприятия по теплоизоляции, то потери можно сократить.

В энергетической отрасли расчет падения напряжения на магистрали является одной из важнейших задач. Если все вычисления были проведены грамотно, то у потребителя не возникнет проблем с эксплуатацией электрооборудования.

Онлайн калькулятор расчета потерь напряжения в кабеле

Кабельные линии большой протяженности отличаются значительным сопротивлением, которое вносит свои коррективы в работу сети. В зависимости от марки кабеля и других параметров будет отличаться и величина сопротивления. А величина потеть напряжения на кабельной линии прямо пропорциональна  этому сопротивлению.

При помощи онлайн калькулятора расчет потерь напряжения в кабеле  сводится к таким действиям:

  • Укажите длину кабеля в метрах и материал токоведущих жил в соответствующих окошках;
  • Сечение проводника в мм²;
  • Количество потребляемой электроэнергии в амперах или ваттах (при этом поставьте указатель напротив мощности или силы тока, в зависимости от того, какой параметр вам известен, и какую величину вы будете указывать);
  • Проставьте величину напряжения в сети;
  • Внесите коэффициент мощности cosφ;
  • Укажите температуру кабеля;

После того как вы внесли вышеперечисленных данные в поля калькулятора, нажмите кнопку «вычислить» и в соответствующих графах вы получите результат расчета — величину потерь напряжения в кабеле ΔU в %, сопротивление самого провода Rпр в Ом, реактивную мощность Qпр в ВАр и напряжение на нагрузке Uн.

Для вычисления этих величин вся система, включающая кабель и нагрузку, заменяется на эквивалентную, которую можно представить таким образом:

Схема замещения линии с нагрузкой

Как видите на рисунке, в зависимости от типа питания нагрузки (однофазная или трехфазная), сопротивление кабельной линии будет иметь последовательное или параллельное соединение по отношению к нагрузке. Расчет  в калькуляторе осуществляется по таким формулам:

Где,

  • ΔU – потеря напряжения;
  • UЛ – линейное напряжение;
  • UФ – фазное напряжение;
  • I – ток, протекающий в линии;
  • ZК – полное сопротивление кабельной линии;
  • RК – активное сопротивление кабельной линии;
  • XК – реактивное сопротивление кабельной линии.

Из них UЛ, UФ, I, — задаются на этапе введения данных. Для определения полного сопротивления ZК производится арифметическое сложение его активной  RК и реактивной XК составляющей. Активное и реактивное сопротивление определяется по формулам:

  • RК = ( ρ * l ) / S
  • RК – активное сопротивление кабельной линии, где
  • ρ – удельное сопротивление для соответствующего металла (медь или алюминий), но величина удельного сопротивления материала величина не постоянная и может изменяться в зависимости от температуры, из-за чего для приведения его к реальным условиям выполняется пересчет по отношению к температуре:
  • ρt = ρ20 *
  • здесь:
  • a – это коэффициент температурного изменения удельного сопротивления материала.
  • ρ20 – удельное сопротивление материала при температуре +20ºС.
  • t – реальная температура проводника, в данный момент времени.
  • l – длина кабельной линии (если нагрузка однофазная, а кабель имеет две жилы, то обе они включены последовательно и длину необходимо умножить на 2)
  • S – площадь сечения проводника.
  1. Зная активное сопротивление можно рассчитать реактивное XК, через коэффициент мощности по такой формуле:
  2. Реактивная мощность определяется по такой формуле: Q = S*sin φ, где
  3. Где S – это полная мощность, которую можно определить, как произведение тока в цепи на входное напряжение источника или как отношение активной мощности к коэффициенту мощности.
  4. Для вычисления величины напряжения, приходящейся на нагрузку, производятся такие расчеты: UН = U — ΔU, где
  • Где UН – величина напряжения, приложенная к нагрузке;
  • U – напряжение на вводе в кабельную линию
  • ΔU – падение напряжения в кабельной линии.

Базовые формулы определения напряжения

Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

Через силу тока и сопротивление

Значение Формула
Базовый расчёт напряжения на участке цепи U=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах
Определение напряжения в цепи переменного тока U=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи

Закон Ома имеет исключения для применения:

  1. При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
  2. При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
  3. Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
  4. При нахождении под воздействием высокого напряжения проводников или диэлектриков.
  5. Во время процессов, проходящих в устройствах на основе полупроводников.
  6. При работе светодиодов.

Через мощность и силу тока

При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.

При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.

При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.

Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.

Через работу и заряд

Методика расчёта используется в лабораторных задачах и на практике не применяется.

Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

Расчёт сопротивления

При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.

Значение Формула
Расчет сопротивления одного элемента R=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах
Расчет для однородного проводника R=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2)

Последовательное подключение

При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2+…+Rn, где R=R1+R2+…+Rn — значения сопротивления элементов в Омах.

Параллельное подключение

Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.

Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2+…+1/Rn.

В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.

Voltage drop calculations

DC / single phase calculation

The voltage drop V in volts (V) is equal to the wire current I in amps (A) times
2 times one way wire length L in feet (ft) times the wire resistance per 1000 feet R in ohms (Ω/kft) divided by 1000:

Vdrop (V) = Iwire (A) × Rwire(Ω)

= Iwire (A) × (2 × L(ft) × Rwire(Ω/kft) / 1000(ft/kft))

The voltage drop V in volts (V) is equal to the wire current I in amps (A) times 2 times
one way wire length L in meters (m) times the wire resistance per 1000 meters R in ohms (Ω/km) divided by 1000:

Vdrop (V) = Iwire (A) × Rwire(Ω)

= Iwire (A) × (2 × L(m) × Rwire (Ω/km) / 1000(m/km))

3 phase calculation

The line to line voltage drop V in volts (V) is equal to square root of 3 times the wire current I in amps (A) times
one way wire length L in feet (ft) times the wire resistance per 1000 feet R in ohms (Ω/kft) divided by 1000:

Vdrop (V) = √3 × Iwire (A) × Rwire
(Ω)

= 1.732 × Iwire (A)
× (L(ft) × Rwire
(Ω/kft) / 1000(ft/kft))

The line to line voltage drop V in volts (V) is equal to square root of 3 times the wire current I in amps (A) times
one way wire length L in meters (m) times the wire resistance per 1000
meters R in ohms (Ω/km) divided by 1000:

Vdrop (V) = √3 × Iwire (A) × Rwire
(Ω)

= 1.732 × Iwire (A)
× (L(m) × Rwire (Ω/km) / 1000(m/km))

Wire diameter calculations

The n gauge wire diameter dn in inches (in) is equal to 0.005in times 92 raised to the power of 36 minus gauge number n, divided by 39:

dn (in) = 0.005 in × 92(36-n)/39

The n gauge wire diameter dn in millimeters (mm) is equal to 0.127mm times 92 raised to the power of 36 minus gauge number n, divided by 39:

dn (mm) = 0.127 mm × 92(36-n)/39

Wire cross sectional area calculations

The n gauge wire’s cross sercional area An in kilo-circular mils (kcmil) is equal to 1000 times the square wire diameter d in inches (in):

An (kcmil) = 1000×dn2
= 0.025 in2 × 92(36-n)/19.5

The n gauge wire’s cross sercional area An in square inches (in2)
is equal to pi divided by 4 times the square wire diameter d in inches (in):

An (in2) = (π/4)×dn2
= 0.000019635 in2 × 92(36-n)/19.5

The n gauge wire’s cross sercional area An
in square millimeters (mm2) is equal to pi divided by 4 times the square wire diameter d in millimeters (mm):

An (mm2) = (π/4)×dn2
= 0.012668 mm2 × 92(36-n)/19.5

Wire resistance calculations

The n gauge wire resistance R in ohms per kilofeet (Ω/kft) is equal to 0.3048×1000000000 times the wire’s resistivity ρ in
ohm-meters (Ω·m) divided by 25.42 times the cross sectional area An in square inches (in2):

Rn (Ω/kft) = 0.3048 × 109 × ρ(Ω·m) / (25.42
× An (in2))

The n gauge wire resistance R in ohms per kilometer (Ω/km) is equal to 1000000000 times the wire’s resistivity ρ in
ohm-meters (Ω·m) divided by the cross sectional area An in square millimeters (mm2):

Rn (Ω/km) = 109
× ρ(Ω·m) / An (mm2)

Источник: ledsshop.ru

Тёплый Дом