Какие солнечные батареи лучше? Монокристалл или поликристалл

Какую взять: переносную или стационарную солнечную батарею?

Как выбрать солнечную батарею по конструктивному исполнению? Существуют стационарные и переносные модели. Стационарные солнечные панели предназначены для монтажа на крышу дома или гаража. Они имеют немалый вес и не предназначены для перемещения. Стационарную батарею стоит купить, если необходимо запитать дом или дачу.

Переносные складные панели удобны для походов. Если нужно подзарядить телефон или планшет, подключить походный холодильник или телевизор. Некоторые, как например, ФСМ-7МТ, имеют складную конструкцию и превращаются в небольшую сумочку. Они имеют USB-порт для подключения зарядки телефона или планшета. Вес такого устройства всего 300 гр, поэтому его можно свободно носить в рюкзаке.

Существуют мощные складные панели до 150 Вт. Такие панели подходят для палаточных городков или кемпинга на долгих стоянках. Как и мобильные модули они также имеют складную конструкцию — правда, в рюкзак уже не поместятся. Одной из таких хороших складных солнечных батарей является двухпанельный модуль Woodland Sun House мощностью 120 Вт. Длина такой панели в разложенном состоянии составляет 128 см. Производитель предусмотрел для нее специальную сумку для транспортировки, куда солнечная панель помещается в сложенном состоянии.

Так какую солнечную батарею все-таки лучше взять: стационарную или переносную? Если нужно запитать дом, то однозначно стационарную соответствующей мощности. Для походов в лес и долгих стоянок лучше взять складную модель. А для мобильного телефона или планшета небольшую панель в виде сумки.

Обзор бескремниевых устройств

Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.

Солнечные панели из редких металлов

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.

Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.

Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов

Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).

Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.

КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.

Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.

Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.

При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.

Преимуществами органических солнечных панелей являются:

  • возможность экологически безопасной утилизации;
  • дешевизна производства;
  • гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Конструкция и применение

По устройству все солнечные преобразователи разделяют на монокристаллические и поликристаллические. От конструктивного исполнения каждой панели зависит ее эффективность и стоимость. Мировые производители этих устройств используют в качестве рабочего тела кремний, теллурид кадмия и соединения на основе меди, индия, галлия, селена. Последними достижениями в этой области считаются батареи, рабочим материалом которых является арсенид галлия.

Отечественная промышленность для производства солнечных генераторов использует преимущественно кремниевые полупроводниковые пластины. Готовые модули, предназначенные для выработки электрического тока, объединяют своей конструкцией набор ячеек. Плоские панели устанавливают на специальные стеллажи с поворотными устройствами, при помощи которых в течение дня устанавливается максимально возможный угол падения лучей солнца на полупроводник. Дешевым, но менее эффективным вариантом является использование неподвижных конструкций, настроенных на определенный постоянный угол.

Важным элементом любой солнечной сборки являются аккумуляторы, которые накапливают электрическую энергию для использования ее ночью или в мало освещенное время суток. Дальше она из аккумуляторов поступает непосредственно в нагрузку, либо сначала на инвертор 12(24)–220 В, а затем к потребителю, в зависимости от его типа.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Генерировать солнечную энергию выгодно там, где в году много ярких дней. Большинство регионов РФ малопригодны для использования только энергии солнца. Солнечные генераторы чаще применяются лишь как добавочные устройства энергоснабжения.

Основные параметры для сравнения

Сделать идеальный выбор можно только после сравнения всех значимых параметров при одинаковых условиях, и желательно в режиме фактической эксплуатации. Это позволит сформировать более целостную картину  и предупредит возможные разочарования. Ну например параметры солнечных панелей которые декларируют продавцы, определяются в лабораторных условиях, плюс лукавые маркетологи используют два разных подхода, в одном случае они говорят по КПД солнечной панели, в другом о КПД фотоэлектрического модуля или вообще ячейки.

Фактически, для конечного пользователя важны только параметры:

  • Производительность;
  • Надёжность;
  • Стоимость.

Поликристаллы и применение солнечных батарей

Монокристаллические пластины усовершенствованы и превосходят поликристаллы. Из-за гибкого строения их можно размещать на кровле дома или беседки.

Поликристаллические элементы хороши для уличной станции, так как их устанавливают только на ровную поверхность, для них необходимо присмотреть отдельное место на садовом участке. При размещении в беседке не допускается застекление панелей, так как от этого происходит снижение КПД. Коэффициент полезного действия у серийно выпускающихся панелей составляет примерно 18%, что ниже монокристаллических. Поликристаллические пластины несут потери КПД в основном из-за неоднородности поверхности.

Гибкую монокристаллическую пластину удобно

Сравнение монокристаллических и

Итак, какая солнечная батарея лучше — монокристаллическая или поликристаллическая? Чтобы ответить на этот вопрос, нужно сначала разобраться, а чем же они отличаются?

На фото ниже представлены два основных типа:

Первое, что бросается в глаза, это внешний вид. У монокристаллических элементов углы скругленные и поверхность однородная. Скругленные углы связаны с тем, что при производстве монокристаллического кремния получают цилиндрические заготовки. Однородность цвета и структуры монокристаллических элементов связана с тем, что это один выращенный кристалл кремния, а кристаллическая структура является однородной.

В свою очередь, поликристаллические элементы имеют квадратную форму из-за того, что при производстве получают прямоугольные заготовки. Неоднородность цвета и структуры поликристаллических элементов связана с тем, что они состоят из большого количества разнородных кристаллов кремния, а также включают в себя незначительное количество примесей.

Второе и наверное главное отличие — это эффективность преобразования солнечной энергии.Монокристаллические элементы и соответственно панели на их основе имеют на сегодняшний день наивысшую эффективность — до 22% среди серийно выпускаемых и до 38% у используемых в космической отрасли. Монокристаллический кремний производится из сырья высокой степени очистки (99,999%).

Серийно выпускаемые поликристаллические элементы имеют эффективность до 18%. Более низкая эффективность связана с тем, что при производстве поликристаллического кремния используют не только первичный кремний высокой степени очистки, но и вторичное сырье (например, переработанные солнечные панели или кремниевые отходы металлургической промышленности). Это приводит к появлению различных дефектов в поликристаллических элементах, таких как границы кристаллов, микродефекты, примеси углерода и кислорода.

Эффективность элементов в конечном счете отвечает за физический размер солнечных панелей. Чем выше эффективность, тем меньше будет площадь панели при одинаковой мощности.

Третье отличие — это цена солнечной батареи. Естественно, цена батареи из монокристаллических элементов немного выше в расчете на единицу мощности. Это связано с более дорогим процессом производства и применением кремния высокой степени очистки. Однако это различие незначительно и составляет в среднем около 10%.

Итак, перечислим основные отличия монокристаллических и поликристаллических солнечных батарей:

Внешний вид. Эффективность. Цена.

Как видно из этого перечня, для солнечной электростанции не имеет ни какого значения, какая солнечная панель будет использоваться в ее составе. Главные параметры — напряжение и мощность солнечной панели не зависят от типа применяемых элементов и зачастую можно найти в продаже панели обоих типов одинаковой мощности. Так что окончательный выбор остается за покупателем. И если его не смущает неоднородный цвет элементов и немного большая площадь, то вероятно он выберет более дешевые поликристаллические солнечные панели. Если же эти параметры имеют для него значение, то очевидным выбором будет немного более дорогая монокристаллическая солнечная панель.

В заключении хочется отметить, что по данным Европейской ассоциации EPIA в 2010 году производство солнечных батарей по типу применяемого в них кремния распределилось следующим образом:

1. поликристаллические — 52,9%

2. монокристаллические — 33,2%

3. аморфные и пр. — 13,9%

Т. е. поликристаллические солнечные батареи по объему производства занимают лидирующие позиции в мире.

Советы по выбору

Зная все плюсы и минусы, которыми обладают поликристаллические или подобные им монокристаллические солнечные батареи, можно определиться с их выбором:

Прежде всего, стоит отталкиваться от своих потребностей. Нужно высчитать объем тепла, который вам понадобится. Наиболее рациональным считается, если солнечная батарея сможет выдавать от 40 до 80 % необходимого тепла. Приобретаемая панель должна соответствовать вашему жилью

Следует принимать во внимание климатическую зону, продолжительность светового дня: для этого делаются специальные расчеты с использованием карты освещенности. При выборе батареи нужно выяснить ее КПД, материал, из которого она изготовлена, период, на который рассчитана работа изделия

Солнечные панели

  • долговечны (срок службы составляет 25-30 лет)
  • просты в монтаже
  • просты в обслуживании
  • надежны и эффективны

Производство модулей основано на применении кремния. Кремний — второй элемент после кислорода по распространенности в земной коре. В природе в чистом виде кремний найти трудно, чаще всего он встречается в соединении с кислородом – кремнезем (Si02). Этот химический элемент обладает высокой реактивностью, и является в чистом виде важнейшим полупроводником в современной радиоэлектроники, вычислительной технике, альтернативной энергетике. В зависимости от технологий изготовления существуют несколько видов панелей, которые постоянно совершенствуются. Наиболее распространенными видами модулей являются кристаллические и тонкопленочные или аморфные панели.  Кристаллические фотоэлектрические элементы бывают монокристаллические или поликристаллические

Монокристаллические панели

Монокремниевая пластина представляет собой один кристалл в виде цилиндрических максимально чистых кремниевых слитков, из которых путем резки получают прямоугольные кремневые диски по методу Чохральского. Монокристаллические элементы ― это квадраты с закругленными или срезанными углами,однородные по структуре, толщиной 0,2 — 0,3 мм, темно-синего или черного цвета с антиотражающим покрытием. Монокристаллические солнечные модули отличаются высокой эффективностью, компактностью, обладают наибольшим сроком службы.

Технология изготовления солнечных батарей из монокристаллических элементов достаточно дорогая. Это связано с использованием кремния высокой степени очистки.

Поликристаллические панели

Солнечные пластины из поликремния производятся путем постепенного охлаждения кремневой субстанции. Такая технология производства требует меньше энергозатрат и кремния не самой высокой степени очистки. Обрабатываются блоки поликристаллов так же, как и монокристаллическая заготовка. Поликристаллические панели представляют собой блок кристаллов разного направления, на срезе некоторые кристаллы четко видны, это правильные квадраты синего цвета с антиотражающим покрытием или серебристо-серые без покрытия, толщиной 0,2 – 0,3мм. КПД таких батарей более низкий (от 13% до 18%).

Тонкопленочные (аморфные) солнечных панелей

Основное отличие тонкопленочных или аморфных панелей состоит в напылении тонкого слоя аморфного кремния на подложку. Подкладочным материалом может служить либо гибкая (пластик) либо жесткая (стекло или металл) основа. Аморфные панели от других видов можно отличить по их темно-серому цвету, они гибкие, компактные и легкие. Стоимость ниже  традиционных кремниевых. Такие батареи прекрасно работают при большой запыленности воздуха, им достаточно рассеянного света.  Последние инновации в разработке кремниевой пленки привели к производству эффективных многопереходных солнечных батарей, которые содержат несколько слоев кремния. Разные полупроводниковые материалы поглощают солнечный свет по-разному, таким образом, захватив весь спектр излучений.

Виды кремниевых солнечных батарей

Поликристаллические

Главным элементом таких панелей являются полупроводниковые элементы поликристаллической структуры. Они гораздо дешевле монокристаллических, так как по сути изготавливаются из обрезков, оставшихся от монокристаллических элементов. В процессе изготовления кремниевый сплав просто охлаждается без последующей обработки.

КПД поликристаллических солнечных батарей составляет в среднем 12 — 18%, в то время, как у монокристаллических КПД достигает 22%. Однако учитывая меньшую цену, можно приобрести чуть больше панелей и получить тот же «выхлоп» за те же деньги, что и у монокристаллов. Такое возможно только в случае, когда есть много места на крыше. Также поликристаллы отличаются от монокристаллов неоднородностью цветовой гаммы.

Сколько стоят поликристаллические солнечные батареи? В среднем 3500 рублей за 100 Вт (многое зависит от производителя). Одной из самых недорогих поликристаллических батарей является Восток Pro ФСМ 150 П мощностью 150 Вт.

Монокристаллические

Для монокристаллических солнечных панелей специально выращивается монокристалл по методу Чохральского. Затем из нескольких кремниевых ячеек собирается целая панель определенной мощности. Чаще всего панель состоит из 36 или 72 модулей. Эффективность работы монокристаллических панелей гораздо выше, чем у поликристаллических, и составляет порядка 18 – 22%. 

Благодаря такой особенности при одинаковых размерах монокристаллические преобразуют больше солнечной энергии, чем поликристаллические. Какие лучше солнечные батареи: поликристаллические или монокристаллические? Все упирается в бюджет. Если есть возможность потратить чуть больше, тогда стоит купить монокристаллы, у которых окупаемость быстрее. Также монокристаллические батареи будут предпочтительнее, если площадь крыши относительно невелика. Средний срок «жизни» составляет 25 лет.

Если же хотите сэкономить и солнечная батарея вам нужна только, чтобы запитать холодильник или насосную станцию на даче, тогда можно взять поликристаллическую модель.

Аморфные

Аморфные батареи состоят из кремниеводорода (SiH4), который получают путем действия электрического тока на кремний. В результате этого кремний испаряется, а затем тонким слоем оседает на подложку.

КПД у аморфных панелей примерно такой же, как у поликристаллических. Однако у аморфных моделей есть некоторые преимущества. Например, они могут вырабатывать электроэнергию даже в пасмурную погоду, дождь, когда в воздухе высокая концентрация пыли или во время заката/рассвета.

Производство кремниевых кристаллов

Производство солнечных панелей начинается с изготовления моно- или поликристаллических кремниевых элементов. Монокристаллический кремний требует более сложной и трудоемкой технологии.

Его создание осуществляется в несколько этапов:

  • Многоступенчатая очистка кварцевого песка, содержащего большое количество диоксида кремния. В результате очистки из него удаляется кислород. Этот процесс выполняется при высокой температуре, обеспечивающей плавление и последующий синтез материала с другими химическими веществами.
  • Далее, из очищенного кремния выращиваются кристаллы. Вначале отдельные куски чистого материала закладываются в тигель, внутри которого они разогреваются и плавятся. В расплавленную массу помещается затравка, используемая в качестве основы будущего кристалла. Атомы кремния, оседая слоями на этой затравке, постепенно принимают четкую упорядоченную структуру. Конечным результатом этого продолжительного действия становится крупный однородный кристалл.
  • На следующем этапе монокристалл измеряется, калибруется и обрабатывается до требуемой формы. На выходе он получается в форме цилиндра, не совсем удобной для последующей обработки. Поэтому заготовка в сечении превращается в квадрат с закругленными углами. Затем, готовый монокристалл при помощи стальных нитей разрезается на отдельные тонкие пластинки. После этого выполняется их очистка, проверка качества и работоспособность.
  • Способность вырабатывать электроэнергию появляется у кремния после добавления в него бора и фосфора. Сторона п-типа покрыта фосфором, обеспечивающим получение свободных электронов. На стороне р-типа располагается слой бора с дырочной проводимостью. Таким образом, между двумя элементами создается р-п-переход. При попадании на ячейку солнечного света, из атомной решетки начнется усиленный выход электронов и дырок. Они распространяются по всему электрическому полю и устремляются к своему заряду. Сбор полученного тока осуществляется с помощью проводников, припаянных с каждой стороны пластины.
  • На завершающей стадии пластинки соединяются в цепочки, после чего они собираются в более крупные блоки. Мощность батареи зависит от количества ячеек. При их последовательном соединении возникает определенное значение напряжения, а при параллельном – сила тока. Для защиты от внешних воздействий ячейки покрываются пленкой, переносятся на стекло и устанавливаются в рамку прямоугольной формы. В конце сборки проверяются вольтамперные характеристики, после чего панель готова к эксплуатации.

Заключение

Несмотря на то, что между разными типами модулей есть различия, нет однозначного ответа, какой солнечный модуль удовлетворяет всем возможным требованиям лучше всего. Тип модуля выбирается в зависимости от характеристик вашего объекта и требований к установке.

При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты:

КПД и срок службы

Монокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.

Температурный коэффициент

В реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи будут менее производительными, чем аморфные.

Потеря эффективности

Деградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора. Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. Содержанием водорода обусловлена его более быстрая деградация. Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.

Стоимость

Тут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.

Размеры и площадь установки

Монокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.

Светочувствительность

Здесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли, при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.

Годовая выработка

В результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.

Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.

Теперь об аморфных батареях. Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.

Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстро портятся – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.

Источник: ledsshop.ru

Тёплый Дом