Как продлить срок службы
Некоторые секреты продления срока службы люминесцентных ламп:
- в первую очередь соблюдать режим использования, включать и выключать лампу на продолжительный период времени, но не чаще 5 раз за сутки;
- использовать их в приемлемых температурных рамках;
- правильно подбирать осветительные приборы по мощности в соответствии с их назначением, так как данная величина, необходимая для освещения квартир домов, существенно отличается от моделей, используемых на производстве;
- можно залудить контакты во избежание их окисления под воздействием температуры и влажности окружающей среды;
- стоит припаять все скрученные в стартере провода, что позволить увеличить время их использования.
Минусы
- Относительно большая стоимость.
- Люминесцентные лампы – это потенциальный источник опасности, так как каждая колба содержит до 5 мг ртути, которая очень токсична и может нанести вред здоровью и окружающей среде.
- Газоразрядные лампы чувствительны к пониженным и повышенным температурам. Могут не работать при температуре воздуха ниже -20 °C и выше +50 °C.
- Чувствительны к влажности.
- Задержка включения, так как требуется время для разогрева лампы.
- Непривычный для зрения световой спектр, следствием чего является искажение цветовосприятия. Мерцание с частотой вдвое выше частоты электросети.
Как подключить люминесцентную лампу
Классическая схема подключения одной ЛЛ
В традиционной схеме всего три элемента:
- Сам люминесцентный источник света,
- Стартер,
- Дроссель.
Дроссель представляет собой обычную катушку индуктивности с наборным сердечником из пластин. Стартер – устройство, состоящее из малогабаритной неоновой лампы и конденсатора. Внутри ее колбы находятся подвижные биметаллические контакты. В момент подачи напряжения между биметаллическими контактами стартера возникает разряд, его электроды изменяют свою геометрию и замыкают цепь. Дроссель играет роль балласта. Электроды источника света прогреваются, стартер отключается, возникает тлеющий разряд, вызывающий свечение люминофора, нанесенного на внутреннюю сторону колбы. Согласно ГОСТам, схема должна включиться в течение максимум 10 секунд.
Для включения двух ламп не нужно дублировать схему. Можно использовать только один дроссель.
Схема подключения двух люминесцентных ламп (ЛЛ)
Обе этих схемы можно дополнить конденсатором, включенным параллельно к источнику питания. Это улучшит режим. В первой схеме параметры мощности источника света, дросселя, стартера должны совпадать. Во второй схеме параметры дросселя должны быть равны сумме мощностей двух ламп, а параметры стартеров должны соответствовать мощности каждой из ламп.
Выбор конденсатора осуществляется исходя из номинала мощности ЛЛ. Конденсатор в таком источнике света служит для компенсации реактивной мощности, и при отсутствии её учёта как бы не обязателен. Есть — хорошо, нет — ничего страшного. Не редко, при перепадах напряжения или некачественном конденсаторе происходит его возгорание.
Люминесцентные лампы (ЛЛ) | |
Мощность лампы, Вт | Параллельно включенный конденсатор 250 В, мкФ |
15 | 4.5 |
18 | 4.5 |
30 | 4.53 |
36 | 4.53 |
58 | 7.05 |
Существует и так называемая схема холодного старта. Она позволяет запустить даже лампу со сгоревшими электродами. Кроме того, схема с умножителем напряжения увеличивает период эксплуатации источника света.
Принципиальная схема питания лампы постоянным током
Этот вариант несколько сложнее и применяется при мощностях не более 40 Вт. Здесь лампа питается постоянным током и включение происходит практически мгновенно, так как выпрямленное напряжение суммируется. Довольно быстро ртуть будет скапливаться в районе одного из электродов, при этом яркость падает. В этом случае достаточно поменять полярность. Конденсаторы С1 и С2 должны иметь напряжение порядка 900 В. А С3 и С4 – от 1000 В. Обычно применяют слюдяные конденсаторы. На электроды прикладывается напряжение порядка 900 Вольт. Со временем люминофор конечно же выгорит, и лампа будет подлежать замене и утилизации. Эта хороша тем, что позволят применять лампы с электродами, находящимися в обрыве.
Существуют и полностью готовые решения – ЭПРА. Это полностью полупроводниковое устройство, которое пришло на смену электромагнитной классике.
Внешний вид ЭПРА
Собрать готовый светильник с ним очень просто.
На входные клеммы устройства подается напряжение питания. Выходные клеммы предназначены для непосредственного подключения лампы.
Достоинства электронного пуско-регулирующего аппарата:
- Простота подключения.
- Повышает срок эксплуатации лампы.
- Снижает время включения лампы.
- Отсутствует мерцание при запуске.
- Долговечность.
Подробнее о ЭПРА вы можите прочитать — тут
Осветители на лампах высокого давления имеют такую схему.
Схема питания ДРЛ
Дроссель выполняет роль балластного устройства. Предохранитель защищает лампу и дроссель от скачка напряжения.
Преимущества и недостатки
Преимущества:
- небольшая цена;
- возможность получения различных оттенков белого цвета;
- экономичное, по сравнению с лампами накаливания, энергопотребление;
- незначительный нагрев поверхности лампы – не более 50 °С;
- срок службы – до 8 000 часов. Лампы накаливания работают не более 2 000 часов;
- световой поток – до 3 000 лм;
- рассеянное, равномерное излучение по всей поверхности источника;
- высокая световая отдача – до 85 лм/Вт;
- большой выбор цветовых оттенков, не требующий применения дополнительных светофильтров.
Недостатки:
- большие габариты (особенно для линейных ЛЛ);
- наличие ртути (до 5 мг на одну лампу), что требует обеспечения дополнительных мер безопасности при эксплуатации;
- проведение дополнительных работ по утилизации по окончании срока службы;
- неравномерный спектр у дешевых ламп;
- медленное включение, вызванное требованием постепенного разогрева электродов;
- повышенная чувствительность к влажности;
- мерцание с удвоенной частотой питающего напряжения при использовании электромагнитных балластников;
- медленный запуск (или его отсутствие) при пониженных температурах внешней среды. При повышенных температурах ( более 50 °С) также высока вероятность отказов.
Линейные ЛЛ
Преимущества
Технологии производства постоянно совершенствуются. В современных энергосберегающих люминесцентных светильниках используется всё качественнее люминесцентный слой. Это дало возможность снизить их мощность, одновременно повысив эффективность светового потока, а также в 1,6 раза уменьшился диаметр стеклянной трубки, что повлияло и на её вес.
Рассмотрим преимущества люминесцентных ламп, это:
- высокий КПД, экономия, большой срок службы;
- разнообразие цветовых оттенков;
- широкий спектральный диапазон;
- наличие цветных и специальных колб;
- большая площадь покрытия.
Читать также: Неисправности парорегулятора в утюге gc 2048
Они расходуют в 5–7 раз меньше электроэнергии, чем обыкновенные лампы накаливания. Например, люминесцентная лампа 20 Вт, даст света столько, сколько лампа накаливания мощностью 100 вт. К тому же у них очень большой срок службы. В этом плане сравниться с ними и превысить эти показания способна только светодиодная лампочка, но у неё есть свои особенности. А также они дают возможность подбирать колбы, которые дадут нужный уровень освещённости. А разнообразие цветовых её оттенков позволит легко декорировать помещение.
Люминесцентные лампы применяются в медицине, используясь как хорошие светильники и как ультрафиолетовые и бактериальные приборы. Такая их возможность широко применяется и в пищевой промышленности.
Очень важным является и тот факт, что такая лампа может осветить довольно солидную площадь, поэтому она стала незаменимой для больших помещений. Самый минимальный срок её службы 4800 часов, выше в технической характеристике указано 12 тысяч часов – это средняя величина, максимальная 20 000 часов, но она зависит от количества включений и выключений, поэтому в общественных местах прослужит меньше.
Недостатки
Несмотря на такие большие преимущества люминесцентных ламп, они могут нанести вред здоровью, поэтому такие светильники не рекомендуют устанавливать дома или на улице. Если такой прибор разобьётся, то может отравить помещение, местность и воздух на большое расстояние. Причиной этого является ртуть. Вот почему использованные колбы должны обязательно сдаваться на утилизацию.
Ещё одним недостатком люминесцентных колб является их мерцание, которое легко вызывается малейшими неполадками. Оно может отрицательно влиять на зрение и быть причиной головной боли. Поэтому необходимо следить за своевременным устранением неисправности или поменять трубочку на новую.
Для запуска светильника нужен дроссель, что усложняет конструкцию и влияет на цену.
Люминесцентные лампы 36 Вт экономичны, дают качественный яркий цвет и создают приятную рабочую атмосферу, цены на них низкие и начинаются от 60 рублей
При их выборе покупатели больше обращают внимание на потребность в освещении помещения. Светильники к ним тоже очень дешёвые, поэтому покупая лампу, больше внимания обращают на нужное качество, а не на цену
Лампы поставляются в коробках по 25 штук – это минимальная партия. Купить одну или несколько можно в розничных магазинах, где они упакованы в заводские коробки. Единица товара весит всего 0,17 кг
Колба очень лёгкая, длинная и хрупкая, поэтому при её транспортировке нужно соблюдать осторожность
Люминесцентные лампы – газоразрядные ртутные лампы низкого давления. Мощность 36 Вт.
Применяется там, где не выдвигаются высокие требования к цветопередаче. Сетевое напряжение 23..
Применяется там, где не выдвигаются высокие требования к цветопередаче. Сетевое напряжение 22..
Применяется там, где не выдвигаются высокие требования к цветопередаче. Сетевое напряжение 22..
Применяется там, где не выдвигаются высокие требования к цветопередаче. Сетевое напряжение 22..
Применяется там, где не выдвигаются высокие требования к цветопередаче. Сетевое напряжение 22..
Применяется там, где не выдвигаются высокие требования к цветопередаче. Сетевое напряжение 22..
Применяется для общего освещения промышленных объектов и офисов. Могут работать как в обычных с..
Применяется для общего освещения промышленных объектов и офисов. Могут работать как в обычных с..
Применяется для общего освещения промышленных объектов и офисов. Могут работать как в обычных с..
Ртутная газоразрядная низкого давления. Отличается лучшей цветопередачей по сравнению с обычным..
Ртутная газоразрядная низкого давления. Отличается лучшей цветопередачей по сравнению с обычным..
Применяется для общего освещения промышленных объектов и офисов. Могут работать как в обычных с..
Применяется в основном для освещения растений и для подсветки аквариумов. За счёт увеличенного ..
Преимущества и недостатки
Основными достоинствами люминесцентных ламп можно назвать:
- Отличную цветопередачу при возможности выбора спектра света, излучаемого ими. Он наиболее приближен к дневному естественному свету, при этом обладает небольшой яркостью, не способен слепить и портить зрение человека.
- Имеют длительный срок службы, ресурс составляет 12 тыс. часов.
- В отличие от своих аналогов они различаются не только по размеру, но и по форме. Осветительные приборы могут выглядеть по-разному:
- в виде длинных тонких трубок;
- круглые как кольцо;
- в форме спирали;
- шара;
- в виде дуги и другие (по картинке можно выбрать нужную модель).
Это позволяет подобрать модель, необходимую для освещения конкретного объекта.
Знаете ли Вы, что: люминесцентные лампы являются энергоэкономичными.
К недостаткам люминесцентных ламп можно отнести:
- Их зависимость от температуры окружающей среды. То есть существует диапазон температурных значений, при которых они работают на полную мощность, но отклонение от него может привести к их поломке или снижению эффективности.
- Сложности подключения, обусловленные особенностями строения (некоторые из них не способны работать без стартера). В настоящее время существуют компактные модели, которые можно вкрутить в обычный патрон, используемый ранее для ламп накаливания.
- Высокая стоимость.
Область применения
В наше время достаточно сильно развита экономика, что заставляет нас использовать энергосберегающие ресурсы. Так, люминесцентные лампы начали использоваться практически везде, будь то собственная квартира, дачный участок или какое-либо производственное помещение, или просто офис. Вместе с тем, газоразрядное производство используется и в плазменных телевизорах.
Самым целесообразным использованием газоразрядного освещения является большое пространство (стадион, бассейн, школьные участки, на улицах городов и дачных участков). Там, где требуется большая отдача от осветительных элементов, включение происходит достаточно редко.
Запуск электронного балласта
При использовании электронного балласта, как правило, нет необходимости в отдельном специальном стартере, так как этот балласт способен самостоятельно сформировать нужные последовательности напряжений.
Запуск люминесцентной лампы электронным балластом может производиться по разным технологиям. В наиболее типичной из них пускорегулирующее устройство подогревает катоды лампы и подает на них напряжение, которого достаточно для зажигания. Как правило, это переменное и высокочастотное напряжение. Такое подключение позволяет устранить мерцание ламп, которое является весомым недостатком электромагнитных балластов.
В зависимости от конструктивных особенностей и временных параметров последовательности пуска лампы, такие пускорегулирующие устройства могут обеспечивать как мгновенное включение света, так и плавное, с постепенным нарастанием яркости.
Часто используются комбинированные методы пуска, когда лампа активируется не только за счет подогрева катодов, но и благодаря тому, что цепь, подпитывающая ее, выступает в качестве колебательного контура. Характеристики колебательного контура подбираются таким образом, чтобы в случае отсутствия разряда в лампе, в нем возникало явление электрического резонанса, которое ведет к значительному повышению напряжениям между катодами лампы. Обычно это приводит также к возрастанию тока подогрева катодов. Причина заключается в том, что при использовании такой схемы пуска спирали накала катодов часто соединяются последовательным образом через конденсатор, и выступают частью колебательного контура. В результате из-за подогрева катодов и высокого напряжения между ними лампа быстро и легко зажигается.
После зажигания параметры колебательного контура меняются, резонанс прекращается, а напряжение в контуре значительно снижается, сокращая тем самым ток накала катодов.
Существуют разные вариации данной технологии. К примеру, в предельных случаях, балласт может не подогревать катоды вовсе, а лишь приложить к ним напряжение, достаточно высокое для зажигания за счет пробоя газа расположенного между катодами. Аналогичная технология используется для пуска ламп с холодным катодом. Она пользуется популярностью среди радиолюбителей, благодаря возможности осуществить запуск даже с перегоревшими нитями накала катодов. Обычными методами их запустить нельзя, так как катоды в таком случае не нагреваются. В частности, радиолюбители используют этот способ для восстановления компактных энергосберегающих ламп, представляющих собой обычные люминесцентные лампы с электронным балластом, встроенным в небольшой корпус. После переделки балласта, такая лампа долго работает, несмотря на перегорание спиралей подогрева. Срок ее службы ограничивается разве что временем полного распыления электродов.
Классификация люминесцентных ламп
По показателю спектрального излучения приборы люминесцентного типа подразделяются на 3 категории:
- стандартные;
- с усовершенствованной передачей цвета;
- со специальными функциональными назначениями.
Стандартные приборы снабжаются люминофорами однослойными, позволяющими излучать разные тона белого. Приборы оптимальны для освещения жилых помещений, административных и производственных блоков.
Люминесцентные лампы с усовершенствованной передачей света оснащаются люминофором с 3-5 слоями. Структура позволяет качественно отражать оттенки за счет усиленной световой отдачи (на 12% больше типовых ламп). Модели подходят для витрин магазинов, выставочных залов и т.д.
Люминесцентные лампы специализированного назначения совершенствуются с помощью разных составов в трубке, позволяющих поддерживать заданную частоту спектра. Устройства применяют в больницах, концертных залах и т.д.
Приборы разделяются на модели высокого и низкого давления.
Конструкции с высоким давлением оптимальны для монтажа в уличных лампах и приборах, имеющих большую мощность.
Лампы невысокого давления применяются в квартирах, административных комплексах, производственных помещениях.
По внешнему виду ЛЛ представлены линейным и компактным вариантами.
Линейная конструкция колбы удлиненная, применяется для промышленных помещений, торговых центров, офисов, медучреждений, спортивных организаций, заводских цехов и т.д. Линейная модель представлена разными вариантами диаметров трубки и конфигураций цоколя. Устройства обозначаются кодами. Прибор с диаметром 1,59 см на упаковке отмечается знаком Т5, с размером 2,54 см — Т8 и т.д.
Компактные люминесцентные лампы (КЛЛ) представляют спиралевидную стеклянную трубку и предназначены для установки в квартирах, офисах и т.д. КЛЛ делятся на 2 типа, главное отличие — виды цоколей (стандартный и с основанием в форме штыря).
Традиционный цоколь в форме резьбы отмечается знаком «Е» и кодом с размером диаметра.
Штырьковый вид цоколя отмечается символом «G»; цифровые данные обозначают расстояние между штырями. Этот вил лампы оптимален для установки в настольных лампах, подвесных бра в небольших помещениях.
Люминесцентные лампы различаются мощностью (слабые и сильные). Мощность люминесцентной лампы в Вт может превышать показатель 80 единиц. Устройства с небольшой мощностью представлены изделиями до 15 Вт.
По показателю распределения света устройства могут быть направленного действия (рефлекторные, щелевого типа) либо ненаправленного.
По типу разряда приборы подразделяются на дуговые, устройства свечения либо тлеющего разряда.
Различается сфера применения осветительных устройств (наружные, внутренние, взрывозащищенные, консольные).
Наружные устройства подходят для оформления зданий с внешней стороны, для освещения беседок, оформления двора и т.д. При выборе необходимо учитывать температурные режимы региона.
Внутренние подходят для офисных и жилых зданий. Устройства снабжаются защитой от влажности и воздействия пыли. Детали корпуса соединяются герметичным способом. Конструкция ламп может быть прямой, подвесной, предназначенной для крепления к поверхности потолка.
Приборы взрывозащищенные разработаны для территорий с риском возникновения взрывов (склады, цеха по производству красителей и т.д.).
Приборы консольного типа монтируются с помощью специальных креплений и имеют индивидуальный корпус.
Утилизация лампы
В люминесцентных лампах содержатся вредные для окружающей среды вещества, так что к утилизации отходов необходимо отнестись максимально ответственно.
В одном светильнике может находиться около 70 мг ртути, что достаточно опасно. Однако на свалках подобных ламп очень много, это серьезная проблема.
Попадание ртути в организм человека или животного быстро провоцирует отравление. Хранить неисправные лампы в доме долгое время запрещено из-за вероятности механического повреждения колбы с последующей утечкой вредных веществ.
Рисунок 10. Обозначение места, где разрешена утилизации приборов
Утилизация приборов:
- Все лампы собирают и складируют в специальных контейнерах.
- При помощи пресса происходит дробление приборов.
- Полученная крошка направляется в камеру термической обработки.
- Вредные вещества попадают в фильтр, где и остаются.
Иногда газы подвергаются воздействию жидкого азота и затвердевают. Полученную ртуть используют вторично.
Электромагнитный балласт
Балласты люминесцентных ламп – это пускорегулирующие устройства. Устройства данного типа представляют собой дроссель (индуктивное сопротивление) подключаемый последовательно с лампой. Чтобы запустить лампу с таким балластом, потребуется также стартер. Преимуществом такого подключения является его простота и дешевизна. Главный недостаток – мерцание ламп при удвоенной частоте сетевого напряжения. Из-за этого у людей, находящихся в помещении, повышается утомляемость глаз, что может негативно сказаться на их здоровье. Кроме того, лампы с электромагнитным балластом относительно долго запускаются (от одной до нескольких секунд, в зависимости от их срока службы), издают гул, и потребляют больше энергии, чем аналоги с электронным балластом.
Кроме вышеперечисленных недостатков, стоит также отметить эффект стробирования, возникающий из-за мерцания ламп. Его суть состоит в том, что при наблюдении за вращающимся или колеблющимся предметом, частота движения которого равна частоте мерцания люминесцентной лампы, этот предмет может казаться неподвижным. Подобный эффект может возникнуть, к примеру, при наблюдении за шпинделем токарного или сверлильного станка, мешалкой кухонного миксера, циркуляционной пилой и прочими движущимися приборами. Поэтому, во избежание травмирования, на производстве использование люминесцентных ламп для подсвечивания движущихся механизмов разрешается лишь при условии дополнительной установки ламп накаливания.
Пускорегулирующая аппаратура
Любые типы газоразрядных ламп не могут быть напрямую подключены к электрической сети. Находясь в холодном состоянии, они обладают высоким уровнем сопротивления и для создания разряда им требуется импульс высокого напряжения. После того как появляется разряд в осветительном устройстве возникает сопротивление с отрицательным значением. Для его компенсации нельзя обойтись простым включением сопротивления в цепи. Это приведет к короткому замыканию и выходу из строя источника освещения.
Для преодоления энергетической зависимости, вместе с лампами дневного света применяются балласты или пускорегулирующая аппаратура.
С самого начала и до сих пор в светильниках применяются устройства электромагнитного типа – ЭмПРА. Основой прибора служит дроссель, обладающий индуктивным сопротивлением. Он подключается вместе со стартером, обеспечивающим включение и выключение. Параллельно подключается конденсатор с высокой емкостью. Он создает резонансный контур, с помощью которого формируется продолжительный импульс, зажигающий лампу.
Существенным недостатком такого балласта является высокое потребление электроэнергии дросселем. В некоторых случаях работа устройства сопровождается неприятным гудением, возникает пульсация люминесцентных ламп, отрицательно влияющая на зрение. Данная аппаратура отличается большими размерами, имеет значительный вес. Она может не запуститься при отрицательных температурах.
Все негативные проявления, в том числе и пульсации люминесцентных ламп удалось преодолеть с появлением электронного балласта – ЭПРА. Вместо громоздких компонентов здесь использованы компактные микросхемы на основе диодов и транзисторов, что позволило заметно снизить их вес. Данное устройство также обеспечивает лампу электрическим током, доводя его параметры до нужных значений, снижая разницу в потреблении. Создается нужное напряжение, частота которого отличается от сетевой и составляет 50-60 Гц.
На некоторых участках частота достигает 25-130 кГц, что позволило устранить мигание, негативно влияющее на зрение и снизить коэффициент пульсации. Прогрев электродов осуществляется за короткий промежуток времени, после чего лампа сразу же загорается. Использование ЭПРА существенно увеличивает срок годности и нормальной эксплуатации люминесцентных источников света.
Маркировка и технические характеристики
Напряжение в сети питания переменного тока в разных странах различается. К примеру, в странах бывшего СССР принято значение 220 Вольт, в США, Японии и других странах – 110 Вольт.
У нас востребованы осветительные приборы с цоколями Е14, Е27, Е40. Обычно маркировка осуществляется в формате Ехх. Буква «Е» — общепринятая, от фамилии изобретателя Эдисона (Edison). А хх – это цифры, означающие диаметр в мм.
Е14 – самый маленький из упомянутых. Обычно для небольших лампочек в виде свечи. Может применяться для подсветки и маленьких светильников.
Е27 – основной для нашей страны. Сейчас он применяется и для ламп накаливания, энергосберегающих и светодиодных.
Е40 – в быту практически не встречаются и предназначены для мощных осветителей. В основном он принят на производственных предприятиях, где света должно быть много. Или, например, уличное освещение.
Есть еще и Е10, но он применяется для низковольтных ламп накаливания, например может применяться в елочных гирляндах. Лампы с таким цоколем не применяются для освещения, только для декоративных целей.
На лампах со штыревым цоколем маркировка в обязательном порядке содержит латинскую букву G. После идут цифры, которые означают дистанцию между центрами штырьков в миллиметрах. Перед цифрами может дополнительно размещаться одна из букв U, X, Y, Z.
Существует российская и международная маркировка осветительных приборов.
Западная маркировка
Код |
Определение |
Особенности |
Область применения |
530 |
Warm white |
Посредственная цветопередача (Ra) Теплый цвет как у лампы накаливания. Желто-коричневый оттенок . |
Редкие представители. Гаражи, кладовые |
640 740 о |
Cool white |
Нейтральный белый свет. Средняя цветопередача. |
Широко распространены в больницах, школах, магазинах |
765 |
Daylight |
Свет холодный белый (голубоватый),хорошая цветопередача |
Помещения требующие концентрации без искажения предметов. Офисы, галереи, дизайнерские бюро |
827 |
Warm white |
Схож с 530, только имеет хорошую цветопередачу |
Жилые помещения |
830 |
Warm white |
Чуть светлее чем 827 модель, так же имеет хорошую цветопередачу |
Жилые помещения, библиотеки |
840 |
Cool white |
Нейтральный белый свет. Хорошая цветопередача. |
Общественные здания Торговые, спортивные залы, больницы. Уличное освещение |
865 |
Daylight |
Свет холодный белый (голубоватый), хорошая цветопередача |
Офисы, галереи, дизайнерские бюро. Уличное освещение |
880 |
Daylight |
Холодный белый свет. Отчетливо выделяется голубизна. Хорошая цветопередача |
Специальное освещение, применяется в определенных условиях требующих искажения предметов в холодный голубой |
930 |
Warm white |
Теплый цвет как у лампы накаливания. Отличный показатель индекса цветопередачи |
Жилые помещения, библиотеки |
940 |
Cool white |
Нейтраль Отличный показатель индекса цветопередачи ный белый свет. |
Широко распространены в больницах, школах, магазинах |
954 965 |
Daylight |
Холодный белый свет (нейтральный), наилучшая цветопередача |
Офисы, галереи, дизайнерские бюро, выставки, освещение аквариумов |
Цоколь G13
Последние три цифры маркировки характеризуют световой поток, который дает конкретный осветитель: на картинке 8 – это цветопередача, 40 (две последние) – это цветовая температура. В данном случае индекс цветопередачи равен 80Ra, а цветовая температура 4000 К. Здесь значение 840 можно трактовать как лампа белого света для рабочих поверхностей с очень хорошей цветопередачей и светотдачей. Такие применяются в жилых помещениях и для работы. Цветовую температуру лучше выбирать не менее 4000 К. Обычный дневной свет имеет этот показатель в диапазоне от 5000 К до 6500 К. При цветовой температуре в 2700 К предметы, на которые падает свет, визуально могут иметь коричневый оттенок. Чем больше первая цифра, тем лучше и комфортнее глазу.
Российская маркировка представлена в рисунке ниже.
Российская маркировка
Популярные марки
Трубчатые люминесцентные источники света часто применяют в магазинах, промышленных помещениях. Пользуются популярностью лампы белого света (ЛБ) и дневного света (ЛД). По европейскому обозначению самым используемым является 765 (холодный) и 640 (теплый) свет (маркировка фирмы Osram). Philips TLD имеет маркировку 54 (холодный) и 33 (теплый).
Тип ЛЛ | Характеристики | Применение |
Линейная лампа тип Т8 (26 мм) | Популярные лампы мощностью 36 Вт и 18 Вт с цоколем G13. Срок службы в среднем 10 тыс. часов. Для пуска используют балласты на основе электромагнитного дросселя или электронные (ЭмПРА или ЭПРА). | Мощность отражается на длине. Чем она больше, тем длиннее лампа. |
Линейная лампа тип Т5 (16 мм) | Мощность 6 – 28 Вт, срок эксплуатации от 6 тыс. до 10 тыс. часов. Для пуска применяют схему электронного балласта. | Лампы используют в жилых комнатах, их размещают в подвесных светильниках, в интерьерах бытовых помещений. |
Линейная лампа тип Т4 (12,5 мм) | Диаметр трубки 12,5 мм. Диапазон мощностей — от 6 до 24 Вт. Цветовые температуры 6400К и 4200К самые распространённые. Срок эксплуатации от 6 тыс. до 8 тыс. часов. Для запуска необходим электронный балласт. | Лампы применяют для подсветки мобильников, с цоколем G5 в настольных светильниках. |
Как устроена современная ЛЛ
Основной принцип действия современной люминесцентной лампы заключается в получении УФ-излучения с помощью пробоя газового промежутка между электродами и последующего преобразования этого излучения в видимый свет с помощью эффекта люминесценции в специальных фосфорсодержащих покрытиях, так называемых люминофорах. Варьируя состав люминофора, получают разные цвета видимого участка спектра, от синего до красного. На рисунке ниже схематично представлен разрез типичной ЛЛ.
Кроме указанных компонентов каждая лампа наполняется инертным газом (обычно это Ar) для увеличения ресурса вольфрамовых электродов. Наличие ртути (Hg) в небольшом количестве резко увеличивает светоотдачу из-за роста плотности тока, вызванного повышением концентрации электронов, появляющихся в результате ионизации атомом этого металла. Существуют версии ламп, в которых ртуть отсутствует, а УФ-излучение появляется только от ионизации атомов инертного газа. Световой поток таких светильников существенно меньше, но зато они безопасны при эксплуатации.
Принципиальная схема люминесцентной лампы
Конструкция
В общем случае компактная люминесцентное устройство состоит из колбы, электронной платы и цоколя.
Герметичная стеклянная трубка
Колба полого типа (или герметичная изогнутая стеклянная трубка), которая подключается своими выводами к электронной плате.
Инертный газ внутри нее и ртутные пары
Такая трубка на заводе заполнены специальными газами (пары ртути, аргона и прочими газами)
Такие газы очень опасны для человека при повреждении устройства и важно соблюдать осторожность при использовании люминесцентных энергосберегающих устройств
Слой люминофора
Корпус газоразрядного устройства покрыт специальным составом — люминофором (смесь галофосфата кальция и других элементов).
Электрический разряд создает в колбе с парами ртути ультрафиолетовое излучение, которое с помощью люминофора изменяется в видимый световой поток.
Электронная плата
Электронная плата в газоразрядных приборах является важным составляющим звеном и от качества её сборки зависит срок службы и качество её свечения. Конструктивно такая плата состоит из:
- Терморезистора — элемент, который обеспечивает плавный старт устройства и способствует прогреву спиралей лампы без мигания.
- Пускового конденсатора — элемент, который непосредственно запускает прибор.
- Фильтров — предохраняют электронную плату от помех;
- Ёмкостного фильтра — уменьшает пульсации и исключает мерцание прибора;
- Токоограничивющего дросселя — стабилизирует устройство и ограничивает ток;
- Плавкого предохранителя — защищает устройство и отключает лампу при перегрузке;
Принцип работы
На динистор подается напряжение, которое формирует импульс. Этот импульс поступает на транзистор и приводит к его открытию. Как только запуск произведен, то цепь закрывается диодным мостом, конденсатор заряжается и повторного открытия не происходит.
Транзистор действует на трансформатор с несколькими обмотками и с ферритовым сердцевиком. На нити трансформатора подается напряжение и появляется свечение в колбе. При этом напряжение достигает высокого значения (до 600 В).
Когда инертный газ в колбе будет полностью ионизован, то напряжение уменьшается до достаточного для поддержания свечения лампы, что обеспечивает энергосберегающие свойства осветительного прибора.
Как работает лампа
Принцип работы любой люминесцентной лампы включает в себя подачу напряжения на расположенные внутри колбы электроды. Между электродами возникает тлеющий разряд, который поддерживается находящимся внутри колбы инертным газом или парами ртути.
Рисунок 7. Принцип работы
Тлеющий разряд порождает излучение в ультрафиолетовом диапазоне, которое через нанесенный на колбу люминофор превращается в видимый свет нужного оттенка.
Чтобы получить ультрафиолетовое излучение, используются газоразрядные лампы. Обычное стекло ультрафиолет не пропускает, поэтому для изготовления колбы используется специальное кварцевое стекло. Люминофорное покрытие в данном случае отсутствует. Приборы широко используются в соляриях и при обеззараживании помещений.
Источник: