Что такое делитель напряжения и как его рассчитать?

Формула для расчёта делителя напряжения

Как рассчитать резистор для понижения напряжения ?

Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.

Можно рассчитать общее сопротивление в резисторах:

R=R1*R2/(R1+R2)

В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток:I=I1+I2

Найти общий ток можно, зная закон Ома

Уменьшаемое в итоге напряжение на резисторах находится по формуле:
U1=(R1/(R1+R2))*U
U2=(R2/(R1+R2))*UОстаётся узнать, как найти ток на обоих резисторах:

I=U/R

Также, рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу):

r – внутреннее сопротивление устройства.

Разновидности

Разным сопротивлением выдерживается разная нагрузка. Но при этом существуют делители, отличающиеся не только по своим основным, но и по дополнительным параметрам. Несмотря на все эти нюансы и тонкости, главным является один — электрическое сопротивление.

Резисторные

Могут использоваться и для постоянного, и для переменного тока. Резисторы предназначены для низкого напряжения. Их нельзя использовать, если речь заходит о питании мощных машин. Самый простой вариант исполнения предусматривает последовательное соединение двух резисторов.

Резисторные делители напряжения

Как рассчитать делитель напряжения на резисторах? Для этого используется первый закон Кирхгофа и положения Ома. Так, величина тока, протекающая через резисторы, будет одинаковой. И для каждого из них необходимо рассчитывать получаемое значение. Падение при этом прямо пропорциональное величинам тока и сопротивления.

Емкостные

Это устройство предусматривает, что решено подключать конденсаторы для деления. Простейшая схема также состоит из двух элементов, соединённых последовательно. Такое решение популярно, если делается многоуровневый инвертор напряжения. Без них немыслимо ни одно направление силовой электроники. Например, работа электроподвижного состава.

Расчёт значения емкостного делителя

Расчет емкостного делителя напряжения в теории является более лёгким делом, нежели его реализация на практике. Ведь на пути стоит сложность невозможности обеспечения ситуации, когда конденсаторы разряжаются равномерно. Из-за этого, как бы не старались, не получиться добиться, чтобы напряжение распределялось поровну. Так, чем сильнее разряжен один конденсатор, тем ощутимее разница будет на другом. Ведь напряжение в этом случае определяется как результат деления заряда на емкость.

Вам это будет интересно Как работают датчики движения для включения света

Создаваемые с конденсаторами схемы работают очень нестабильно. При их создании всегда должно предусматриваться создание узлов подзарядки. Они используются для выравнивания напряжения на конденсаторах.

Индуктивные

Широко применяются в измерительных устройствах. Являются масштабными электромагнитными преобразователями. В процессе работы могут возникать погрешности. Их источник — неравенство активных сопротивления и индуктивностей из-за рассеяния разных секций обмоток, переход напряжения на коммутационные и соединительные элементы, шунтирующие взаимовоздействия обмоток, проявление емкости нагрузки и паразитных факторов. Если возникают проблемы с самого начала, вероятнее всего, проблема именно в последнем.

Индуктивные делители

Важно! Дополнительно паразитные емкости являются основной причиной возникновения частотной погрешности, что ограничивается использование индуктивных делителей напряжения на высоких частотах. Самые простейшие варианты имеют довольно много недостатков

Но использование на индуктивных делителях напряжений микропроцессоров позволяет использовать алгоритм уравновешивания.

Как работает

На практике использование устройств несколько сложнее, чем просто рассчитать требуемые значения для элементов. Использование схемы замещения для делителей напряжения усложняет реалистичный учет фазовых и амплитудных характеристик. Эта проблема может быть решена исключительно экспериментальным путём. Затруднительно так сделать только если наблюдаются очень высокие частоты.

Графическое изображение работы

В качестве доступной альтернативы используется экспериментальное определение реакции схемы на прямоугольный импульс. Его суть — наблюдение за состоянием, когда на входе происходит скачкообразное изменение напряжения. При единичном воздействии можно наблюдать особенности работы благодаря переходной функции измерительной схемы.

Реакция определяется двумя способами:

  • Первый предполагает, что на вход полностью собранной схемы подают периодически импульсы с амплитудой в 100В (50 или 100 раз в секунду). Фронт их нарастания должен составлять меньше 10-9 с. Получение таких импульсов не является делом сложным. Для этого можно воспользоваться механическими коммутаторами с герконом или ртутным реле. На выходе схемы измеряется реакция посредством осциллографа, на котором присутствует широкополосной усилитель, величина пропускания которого составляет до 109 Гц.
  • Второй способ используется для схем, у которых напряжение составляет несколько десятков киловольт. В таком случае делают крутой срез посредством малоиндуктивного искрового промежутка, помещенного в условия сжатого газа. На выходе с помощью обычного осциллографа записывается реакция. Также вместо среза часто обращаются к использованию разряда заряженного кабеля и волнового сопротивления через искровой промежуток.

Описывая работу делителей напряжения, нельзя обойти вниманием постоянную времени. Чтобы правильно измерять показатели быстропротекающих процессов, необходимо добиться различия в 5-10 раз

Постоянная времени делителя должна быть меньше характеристического времени процесса. Если не получить разницу в 5-10 раз, то будут фиксироваться различные искажения. Наиболее вероятные — это затягивание фронта вместе с уменьшением амплитуды сигнала на выходе в сравнении с расчетными показателями.

Важно! При выборе делителя в первую очередь внимание обращают на его возможное влияние, оказываемое на источник напряжения, равно как и искажения основного параметра при измерении. Например, в случае использования обычных ГИН допустимыми считаются резисторные, емкостные и смешанные устройства, но только при соблюдении оговоренных условий. К таковым относятся значения емкости плеча высокого напряжения и сопротивление

К таковым относятся значения емкости плеча высокого напряжения и сопротивление.

Вам это будет интересно Виды, устройство и принцип работы ползункового реостата

Пример 2

Общий ток цепи, содержащей два соединенных параллельно резистораR1 =70 Ом иR2 =90 Ом, равен 500 мА. Определить токи в каждом из резисторов. Два последовательно соединенных резистора ничто иное, как делитель тока . Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов.

Токи в резисторах

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала

Выполняет сразу несколько очень важных задач: служит ограничителем электрического тока в цепи , создает падение напряжения на отдельных ее участках и разделяет пульсирующий ток.

Помимо номинального сопротивления, одним из наиболее важных параметров резистора

является рассеиваемая мощность. Она зависима от напряжения и тока. Мощность — это то тепло, которое выделяется на резисторе, когда под воздействием протекающего тока он нагревается. При пропуске тока, превышающего заданное значение мощности, резистор может сгореть.

Мощность постоянного тока может быть рассчитана по простой формуле P(Вт) = U(В) * I(А)

,

  • P(Вт) — мощность,
  • U(В) — напряжение,
  • I(А) — ток.

Чтобы избежать сгорания резистора тока, необходимо учитывать его мощность. Соответственно, если схема указывает на замену резистора с мощностью 0,5 Ватт — 0,5 Ватт в данном случае — минимум.

Мощность резистора

может зависеть от его размеров. Как правило, чем меньше резистор — тем меньше мощность его рассеивания. Стандартный ряд мощностей резисторов тока состоит из значений:

  • 0.125 Вт
  • 0.25 Вт
  • 0.5 Вт
  • Более 2 Вт

Рассмотрим на примере: номинальное сопротивление нашего резистора

тока — 100 Ом. Через него течет ток 0,1 Ампер. Чтобы , на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом),

  • P(Вт) — мощность,
  • R(Ом) — сопротивление цепи (в данном случае резистора),
  • I(А) — ток, протекающий через резистор.

Внимание!

При расчётах следует соблюдать размерность. Например, 1 кА= 1000 А. Это же касается и других величин.

Итак, рассчитаем мощность для нашего резистора тока: P(Вт) = 0,12(А) *100 (Ом)= 1(Вт)

Получилось, что минимальная мощность нашего резистора составляет 1 Ватт. Однако в схему следует установить резистор

с мощностью в 1,5 — 2 раза выше рассчитанной. Соответственно идеальным для нас будет резистор тока мощностью 2 Вт.

Бывает, что ток, протекающий через резистор неизвестен. Для расчёта мощности в таком случае предусмотрена специальная формула:

Соединение цепи может быть последовательным и параллельным. Однако никакого труда не составляет рассчитать мощность резистора тока

как в параллельной, так и в последовательной цепи. Следует учитывать лишь то, что в последовательно цепи через резисторы течет один ток.

Например, нам необходимо произвести замену резистора

тока сопротивлением 100 Ом. Ток, протекающий через него — 0,1 Ампер. Соответственно, его мощность — 1 Ватт. Следует рассчитать мощность двух соединенных последовательно резисторов для его замены. Согласно формуле расчёта мощности, мощность рассеивания резистора на 20 Ом — 0,2 Вт, мощность резистора на 80 Ом — 0,8 Вт. Стандартный ряд мощностей поможет выбрать резисторы тока:

Формула делителя напряжения

По этой причине последовательную цепь часто называют делителем напряжения из-за ее способности пропорционально делить общее напряжение на дробные части с постоянными коэффициентами. Применив немного алгебры, мы можем вывести формулу для определения падения напряжения на последовательном резисторе, не учитывая ничего, кроме общего напряжения, сопротивления отдельного резистора и общего сопротивления.

Падение напряжения на любом резисторе:

Сила тока в последовательной цепи:

Подставляем Eобщ/Rобщ вместо In в первую формулу…

Падение напряжения на любом резисторе в последовательнй цепи:

или

В схеме делителя напряжения отношение отдельного сопротивления к общему сопротивлению равно отношению отдельного падения напряжения к общему напряжению питания. Эта формула известна как формула делителя напряжения, и это сокращенный метод определения падения напряжения в последовательной цепи без проведения расчетов тока по закону Ома.

схема и расчёт [Амперка / Вики]

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу Vout ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

Таким образом, сила тока протекающая через резисторы

Теперь, когда нам известен ток в R2, расчитаем напряжение вокруг него:

Или если отавить формулу в общем виде:

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.

Применение делителя для считывания показаний датчика

Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.

Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, Vout будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.

Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта Vout.

Подключение нагрузки

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой (load):

В этом случае Vout уже не может быть расчитано лишь на основе значений Vin,

R1 и R2: сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление

В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:

Подставив значение в общую формулу расчёта Vout, получим:

Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L. Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.

Пропорция сохраняется, Vout не меняется:

А потери уменьшатся:

Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.

Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка на R1 равна:

А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень вероятно, что результатом будет возгарание.

Применимость

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора.

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.

Если потребление тока нагрузкой неравномерно во времени, Vout также будет неравномерным.

wiki.amperka.ru

Виды и принцип действия

В данной публикации подробно рассмотрен резистивный делитель напряжения. Подразумевается линейность характеристики цепи. В таких схемах упрощен расчет сопротивления для понижения напряжения до необходимого уровня. При подключении источника постоянного тока происходит деление напряжений прямо пропорционально значениям электрических сопротивлений нижнего и верхнего плеча.

Цепи с реактивными характеристикамиЧто такое электрическое сопротивление Если составить аналогичную схему с конденсаторами, то на вход для поддержания нормальной функциональности придется подать синусоиду. В этом случае также будет выполнено распределение напряжений на элементах с емкостными характеристиками. Однако этот процесс надо рассматривать в динамике, с учетом частоты и соответствующего изменения амплитуды. Аналогичную методику применяют при работе с индуктивными компонентами.

Значения реактивных сопротивлений:

  • Rc=1/(2*f*π*C);
  • RL=2*f*π*C.

По формулам видно, что сопротивление конденсатора/ катушки обратно (прямо) пропорционально емкости/ индуктивности. Соответственно выбирают значения элементов для деления напряжения.

В представленных примерах принимают бесконечно большим внутреннее сопротивление нагрузки. Для реальных расчетов пользуются более сложными формулами с поправочными коэффициентами. Учитывают действительные комплексные характеристики цепей.

К сведению. В стабилизаторах напряжения и некоторых иных устройствах сопротивление плеча делителя обладает нелинейными параметрами.

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Как работает

На практике использование устройств несколько сложнее, чем просто рассчитать требуемые значения для элементов. Использование схемы замещения для делителей напряжения усложняет реалистичный учет фазовых и амплитудных характеристик. Эта проблема может быть решена исключительно экспериментальным путём. Затруднительно так сделать только если наблюдаются очень высокие частоты.

Графическое изображение работы

В качестве доступной альтернативы используется экспериментальное определение реакции схемы на прямоугольный импульс. Его суть — наблюдение за состоянием, когда на входе происходит скачкообразное изменение напряжения. При единичном воздействии можно наблюдать особенности работы благодаря переходной функции измерительной схемы.

Реакция определяется двумя способами:

  • Первый предполагает, что на вход полностью собранной схемы подают периодически импульсы с амплитудой в 100В (50 или 100 раз в секунду). Фронт их нарастания должен составлять меньше 10-9 с. Получение таких импульсов не является делом сложным. Для этого можно воспользоваться механическими коммутаторами с герконом или ртутным реле. На выходе схемы измеряется реакция посредством осциллографа, на котором присутствует широкополосной усилитель, величина пропускания которого составляет до 109 Гц.
  • Второй способ используется для схем, у которых напряжение составляет несколько десятков киловольт. В таком случае делают крутой срез посредством малоиндуктивного искрового промежутка, помещенного в условия сжатого газа. На выходе с помощью обычного осциллографа записывается реакция. Также вместо среза часто обращаются к использованию разряда заряженного кабеля и волнового сопротивления через искровой промежуток.

Описывая работу делителей напряжения, нельзя обойти вниманием постоянную времени. Чтобы правильно измерять показатели быстропротекающих процессов, необходимо добиться различия в 5-10 раз

Постоянная времени делителя должна быть меньше характеристического времени процесса. Если не получить разницу в 5-10 раз, то будут фиксироваться различные искажения. Наиболее вероятные — это затягивание фронта вместе с уменьшением амплитуды сигнала на выходе в сравнении с расчетными показателями.

Важно! При выборе делителя в первую очередь внимание обращают на его возможное влияние, оказываемое на источник напряжения, равно как и искажения основного параметра при измерении. Например, в случае использования обычных ГИН допустимыми считаются резисторные, емкостные и смешанные устройства, но только при соблюдении оговоренных условий. К таковым относятся значения емкости плеча высокого напряжения и сопротивление

К таковым относятся значения емкости плеча высокого напряжения и сопротивление.

Вам это будет интересно Почему выбило автомат: исправляем неполадки

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель на резисторах — отличается своей универсальностью: используют при постоянном и переменном токе, но только при пониженном сопротивлении цепи.

Тогда на каждом из резисторов: U1= I х R1 и U2 = I х R2 Ток в цепи устройства:

Уменьшение на конденсаторах применяют для цепей с высоким переменным током. В нём минимальная потеря энергии на выходе. Реактивное сопротивление конденсатора зависит от его электроёмкости и частоты напряжения в цепи.

Формула для вычисления сопротивления:

Делитель на индуктивностях используется при переменном низком токе на высоких частотах. Сопротивление катушки переменного тока прямо пропорционально зависит от индуктивности и частоты. У провода катушки имеется активное сопротивление, из-за чего мощность такого прибора больше, чем у аналогов.

Сопротивление катушки находится по формуле:

Расчет гасящего резистора

В схемах аппаратуры связи часто возникает необходимость подать на потребитель меньшее напряжение, чем дает источник. В этом случае последовательно с основным потребителем включают дополнительное сопротивление, на котором гасится избыток напряжения источника. Такое сопротивление называется гасящим.

Будет интересно Как прочитать обозначение (маркировку) резисторов

Напряжение источника тока распределяется по участкам последовательной цепи прямо пропорционально сопротивлениям этих участков. Рассмотрим схему включения гасящего сопротивления:

  1. Полезной нагрузкой в этой цепи является лампочка накаливания, рассчитанная на нормальную работу при величине напряжения Uл= 80 в и тока I =20 ма.
  2. Напряжение на зажимах источника тока U=120 в больше Uл, поэтому если подключить лампочку непосредственно к источнику, то через нее пройдет ток, превышающий нормальный, и она перегорит.
  3. Чтобы этого не случилось, последовательно с лампочкой включено гасящее сопротивление R гас.

Схема включения гасящего сопротивления резистора.

Расчет величины гасящего сопротивления при заданных значениях тока и напряжения потребителя сводится к следующему:

– определяется величина напряжения, которое должно быть погашено:

Uгас = Uист – Uпотр,

Uгас = 120 – 80 = 40в

определяется величина гасящего сопротивления

Rгас = Uгас / I

Rгас = 40 / 0,020 = 2000ом = 2 ком

Далее необходимо рассчитать мощность, выделяемую на гасящем сопротивлении по формуле

P = I2 * Rгас

P = 0,0202 * 2000 = 0,0004 * 2000 = 0,8вт

Зная величину сопротивления и расходуемую мощность, выбирают тип гасящего сопротивления.

Источник: ledsshop.ru

Тёплый Дом